27 research outputs found

    Cloning and heterologous expression of bovine pyroglutamyl peptidase type-1 in Escherichia coli : purification , biochemical and kinetic characterisation

    Get PDF
    We describe the cloning, expression and purification of the bovine XM866409 form of pyroglutamyl-aminopeptidase I. The amino acid sequence, deduced from the nucleotide sequence, revealed that it consists of 209 amino acid residues and showed to have 98% homology with the human AJ278828 form of the enzyme. Three amino acid residues at positions 81, 205 and 208 were found to vary among the two sequences. The bovine enzyme was expressed in XL10-gold Esherichia coli cells. Immobilizied Ni-ion affinity chromatography was used to purify the expressed protein resulting in a yield of 3.3mg of PAP1 per litre culture. The purified enzyme had a specific activity of 1700 units/ml. SDS-PAGE produced a single band for bovine PAP1 with a molecular weight of ~23-24 kDa which is in good agreement with previously reported data on PAP1. Kinetic constants Km and Kcat were 59μΜ and 3.5s-1, respectively. It possessed an optimum pH between 9-9.5, a temperature of 37°C and showed an absolute requirement for a thiol-reducing agent (10mM DTT). EDTA didn’t prove to have an effect on enzyme activity. Competitive inhibition was seen with pyroglutamyl peptides pGlu-His-Pro-NH2 (TRH; Ki= 44.1 uM), pGlu-Ala- OH (Ki=141 uM) and pGlu-Val-OH (Ki=652.17)

    The Invisible Third. The Basque and Celtic Words for "Swallow"

    Get PDF
    In a keynote address at the XI. Fachtagung der Indogermanischen Gesellschaft, about possible non-Indo-European influence on the Celtic languages, Kim McCone drew attention to the similarity between the Insular Celtic, e.g. OIr fannall, W gwennol, and the Basque,i.e. enara, ain(h)- ara, words for 'swallow' (Lat hirundo). McCone reconstructs *waNilri or *weNrilri as preforms for the Insular Celtic words, and *(w)aiNala for Pre- Basque (McCone 2005,408-9).l This suggestion looks very attractive and suggestive and, if correct, would shed rare light on prehistoric linguistic relationships in Western Europe. In this article, I will examine the equation more closely and add a number of observations

    Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated T reg expansion

    Get PDF
    Respiratory syncytial virus–bronchiolitis is a major independent risk factor for subsequent asthma, but the causal mechanisms remain obscure. We identified that transient plasmacytoid dendritic cell (pDC) depletion during primary Pneumovirus infection alone predisposed to severe bronchiolitis in early life and subsequent asthma in later life after reinfection. pDC depletion ablated interferon production and increased viral load; however, the heightened immunopathology and susceptibility to subsequent asthma stemmed from a failure to expand functional neuropilin-1+ regulatory T (T reg) cells in the absence of pDC-derived semaphorin 4a (Sema4a). In adult mice, pDC depletion predisposed to severe bronchiolitis only after antibiotic treatment. Consistent with a protective role for the microbiome, treatment of pDC-depleted neonates with the microbial-derived metabolite propionate promoted Sema4a-dependent T reg cell expansion, ameliorating both diseases. In children with viral bronchiolitis, nasal propionate levels were decreased and correlated with an IL-6high/IL-10low microenvironment. We highlight a common but age-related Sema4a-mediated pathway by which pDCs and microbial colonization induce T reg cell expansion to protect against severe bronchiolitis and subsequent asthma.</jats:p

    Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated T reg expansion

    No full text
    Respiratory syncytial virus-bronchiolitis is a major independent risk factor for subsequent asthma, but the causal mechanisms remain obscure. We identified that transient plasmacytoid dendritic cell (pDC) depletion during primary Pneumovirus infection alone predisposed to severe bronchiolitis in early life and subsequent asthma in later life after reinfection. pDC depletion ablated interferon production and increased viral load; however, the heightened immunopathology and susceptibility to subsequent asthma stemmed from a failure to expand functional neuropilin-1+ regulatory T (T reg) cells in the absence of pDC-derived semaphorin 4a (Sema4a). In adult mice, pDC depletion predisposed to severe bronchiolitis only after antibiotic treatment. Consistent with a protective role for the microbiome, treatment of pDC-depleted neonates with the microbial-derived metabolite propionate promoted Sema4a-dependent T reg cell expansion, ameliorating both diseases. In children with viral bronchiolitis, nasal propionate levels were decreased and correlated with an IL-6high/IL-10low microenvironment. We highlight a common but age-related Sema4a-mediated pathway by which pDCs and microbial colonization induce T reg cell expansion to protect against severe bronchiolitis and subsequent asthma
    corecore