8,048 research outputs found

    Effective Spectral Function for Quasielastic Scattering on Nuclei

    Get PDF
    Spectral functions that are used in neutrino event generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν\nu dependence of predictions of these spectral functions for the QE differential cross sections (d2σ/dQ2dν{d^2\sigma}/{dQ^2 d\nu}) are in disagreement with the prediction of the ψ\psi' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ\psi' superscaling formalism can be well described with a modified {\it {effective spectral function}} (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data.Comment: 16 pages, 23 figures, submitted to Eur. Phy. J.

    Nuclear effects in charged-current quasielastic neutrino-nucleus scattering

    Get PDF
    After a short review of the recent developments in studies of neutrino-nucleus interactions, the predictions for double-differential and integrated charged current-induced quasielastic cross sections are presented within two different relativistic approaches: one is the so-called SuSA method, based on the superscaling behavior exhibited by electron scattering data; the other is a microscopic model based on relativistic mean field theory, and incorporating final-state interactions. The role played by the meson-exchange currents in the two-particle two-hole sector is explored and the results are compared with the recent MiniBooNE data.Comment: 12 pages, 9 figures, to appear in the Proceedings of "XIII Convegno di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April 6-8, 201

    A Study of an Acrylic Cerenkov Radiation Detector

    Get PDF
    An experiment investigating the angle of Cerenkov light emitted by 3-MeV electrons traversing an acrylic detector has been developed for use in the advanced physics laboratory course at the University of Rochester. In addition to exploring the experimental phenomena of Cerenkov radiation and total internal reflection, the experiment introduces students to several experimental techniques used in actual high energy and nuclear physics experiments, as well as to analysis techniques involving Poisson statistics. [to be published in Am. J. Phys. 67 (Oct/Nov 1999).

    Deuteron-deuteron collision at 160 MeV

    Get PDF
    The experiment was carried out using BINA detector at KVI in Groningen. For the first time an extensive data analysis of the data collected in back part of the detector is presented, where a clusterization method is utilized for angular and energy information. We also present differential cross-sections for the (dd\rightarrowdpn) breakup reaction within \textit{dp} quasi-free scattering limit and their comparison with first calculations based on Single Scattering Approximation (SSA) approach.Comment: 6 pages, 4 figures, presented at Jagiellonian Symposium 2015 in Krakow, PhD wor

    Inelastic nucleon contributions in (e,e)(e,e^\prime) nuclear response functions

    Full text link
    We estimate the contribution of inelastic nucleon excitations to the (e,e)(e,e^\prime) inclusive cross section in the CEBAF kinematic range. Calculations are based upon parameterizations of the nucleon structure functions measured at SLAC. Nuclear binding effects are included in a vector-scalar field theory, and are assumed have a minimal effect on the nucleon excitation spectrum. We find that for q\lsim 1 GeV the elastic and inelastic nucleon contributions to the nuclear response functions are comparable, and can be separated, but with roughly a factor of two uncertainty in the latter from the extrapolation from data. In contrast, for q\rsim 2 GeV this uncertainty is greatly reduced but the elastic nucleon contribution is heavily dominated by the inelastic nucleon background.Comment: 20 pages, 7 figures available from the authors at Department of Physics and Astronomy, University of Rochester, Rochester NY 1462

    Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute

    Full text link
    Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fundamental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.Comment: Proceedings of the International Conference on Exotic Atoms and Related Topics - EXA2011 September 5-9, 2011 Austrian Academy of Sciences, Theatersaal, Sonnenfelsgasse 19, 1010 Wien, Austria 6 pages, 3 figure

    Oscillating ultra-cold neutron spectrometer

    Get PDF
    The energy spectrum of ultra-cold neutrons (UCN) is very often a key point to determine the systematic effects in precision measurements utilizing UCN. The proposed novel method allows the in-situ measurements of the UCN velocity distribution and its time evolution. In addition, the proposed UCN spectrometer can be a handy diagnostic tool for monitoring the UCN spectrum in critical places in the transport system connecting an UCN source with experiments. In this paper, we present the preliminary results from measurements and simulations using the oscillating UCN spectrometer at the PSI UCN source

    Neutrino Quasielastic Scattering on Nuclear Targets: Parametrizing Transverse Enhancement (Meson Exchange Currents)

    Get PDF
    We present a parametrization of the observed enhancement in the transverse electron quasielastic (QE) response function for nucleons bound in carbon as a function of the square of the four momentum transfer (Q2Q^2) in terms of a correction to the magnetic form factors of bound nucleons. The parametrization should also be applicable to the transverse cross section in neutrino scattering. If the transverse enhancement originates from meson exchange currents (MEC), then it is theoretically expected that any enhancement in the longitudinal or axial contributions is small. We present the predictions of the "Transverse Enhancement" model (which is based on electron scattering data only) for the νμ,νˉμ\nu_\mu, \bar{\nu}_\mu differential and total QE cross sections for nucleons bound in carbon. The Q2Q^2 dependence of the transverse enhancement is observed to resolve much of the long standing discrepancy in the QE total cross sections and differential distributions between low energy and high energy neutrino experiments on nuclear targets.Comment: Revised Version- July 21, 2011: 17 pages, 20 Figures. To be published in Eur. Phys. J.
    corecore