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Abstract Spectral functions that are used in neutrino event,
generators to model quasielastic (QE) scattering from nuclear
targets include Fermi gas, Local Thomas Fermi gas (LTF),
Bodek-Ritchie Fermi gas with high momentum tail, and the
Benhar-Fantoni two dimensional spectral function. We find
that the ν dependence of predictions of these spectral func-
tions for the QE differential cross sections (d2σ/d Q2dν) are
in disagreement with the prediction of the ψ ′ superscaling
function which is extracted from fits to quasielastic elec-
tron scattering data on nuclear targets. It is known that spec-
tral functions do not fully describe quasielastic scattering
because they only model the initial state. Final state interac-
tions distort the shape of the differential cross section at the
peak and increase the cross section at the tails of the distri-
bution. We show that the kinematic distributions predicted
by theψ ′ superscaling formalism can be well described with
a modified effective spectral function (ESF). By construc-
tion, models using ESF in combination with the transverse
enhancement contribution correctly predict electron QE scat-
tering data.

1 Introduction

Neutrino oscillation experiments make use of neutrino Monte
Carlo (MC) event generators to model the cross sections and
kinematic distributions of the leptonic and hadronic final state
of neutrino interactions on nuclear targets. Therefore, reliable
simulations of the effects of Fermi motion and other nuclear
effects are important. In order to model neutrino cross sec-
tions we need to model the vector part, the axial-vector part,
and axial-vector interference. Because of the conservation of
the vector current (CVC), the same models should be able to
reliably predict the QE electron scattering cross section on
nuclear targets. Unfortunately, none of the models which are
currently implemented in neutrino MC generators are able to
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do it. In this paper, we propose an approach which guarantees
agreement with quasielaststic (QE) electron scattering data
by construction.

1.1 QE scattering from independent nucleons

The top panel of Fig. 1 is the general diagram for QE lepton
(election, muon or neutrino) scattering from a nucleon which
is bound in a nucleus of mass MA. In this paper, we focus on
charged current neutrino scattering. The scattering is from
an off-shell bound neutron of momentum Pi = k. The on-
shell recoil [A − 1]∗ (spectator) nucleus has a momentum
P∗

A−1 = Ps = −k. This process is referred to as the 1p1h
process (one proton one hole). The * is used to indicate that
the spectator nucleus is not in the ground state because it has
one hole. The four-momentum transfer to the nuclear target
is defined as q = (q, ν). Here ν is the energy transfer, and
Q2 = −q2 = ν2 − q2 is the square of the four-momentum
transfer. For free nucleons the energy transfer ν is equal to
Q2/2MN where MN is the mass of the nucleon. At a fixed
value of Q2, QE scattering on nucleons bound in a nucleus
yields a distribution in ν which peaks at ν = Q2/2MN . In
this communication, the term “normalized quasielastic dis-
tribution” refers to the normalized differential cross section
1
σ

dσ
dν (Q

2, ν) = d2σ/d Q2dν
<dσ/d Q2>

where < dσ
d Q2 > is the integral of

[ d2σ
d Q2dν

]dν over all values of ν (for a given value of Q2).

The bottom panel of Fig. 1 shows the same QE lepton
scattering process, but now also including a final state inter-
action with another nucleon in the scattering process. This
final state interaction modifies the scattering amplitude and
therefore can change the kinematics of the final state lepton.
In this paper, we refer to it as “final state interaction of the
first kind” (FSI).

The final state nucleon can then undergo more interactions
with other nucleons in the spectator nucleus. These interac-
tions do not change the energy of the final state lepton. We
refer to this kind of final state interaction as “final state inter-
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Fig. 1 Top: Scattering from an off-shell bound neutron of momentum
Pi = k in a nucleus of mass A. The on-shell recoil [A − 1]∗ (spectator)
nucleus has a momentum P∗

A−1 = Ps = −k. This process is referred to
as the 1p1h process (one proton one hole). Bottom: The 1p1h process
including final state interaction (of the first kind) with another nucleon

action of the second kind”. Final state interactions of the
second kind reduce the energy of the final state nucleon.

1.2 Spectral functions

In general, neutrino event generators assume that the scat-
tering occurs on independent nucleons which are bound in
the nucleus. Generators such as GENIE [1,2], NEUGEN
[3], NEUT [4], NUANCE [5] NuWro [6,7] and GiBUU [8]
account for nucleon binding effects by modeling the momen-
tum distributions and removal energy of nucleons in nuclear
targets. Functions that describe the momentum distributions
and removal energy of nucleons from nuclei are referred to
as spectral functions.

Spectral functions can take the simple form of a momen-
tum distribution and a fixed removal energy (e.g. Fermi gas
model [9–11]), or the more complicated form of a two dimen-
sional (2D) distribution in both momentum and removal
energy (e.g. Benhar-Fantoni spectral function [12,13]).

Figure 2 shows the nucleon momentum distributions in
a 12C nucleus for some of the spectral functions that are
currently being used. The solid green line is the nucleon
momentum distribution for the Fermi gas [9–11] model
(labeled “Global Fermi” gas) which is currently implemented
in all neutrino event generators (Eq. 30 of Appendix B).
The solid black line is the projected momentum distri-
bution of the Benhar-Fantoni [12,13] 2D spectral func-
tion as implemented in NuWro. The solid red line is the
nucleon momentum distribution of the Local-Thomas-Fermi
gas (LTF) model [8] which is implemented in NURWO and
GiBUU.

Fig. 2 Nucleon momentum distributions in a 12C nucleus for several
spectral functions. The curve labeled “Global Fermi” gas is the momen-
tum distribution for the Fermi gas model (Eq. 30 in Appendix B). The
blue line is the momentum distribution for the effective spectral function
described in this paper

It is known that theoretical calculations using spectral
functions do not fully describe the shape of the quasielas-
tic peak for electron scattering on nuclear targets. This is
because the calculations only model the initial state (shown
on the top panel of Fig. 1), and do not account for final state
interactions of the first kind (shown on the bottom panel of
Fig. 1). Because FSI changes the amplitude of the scattering,
it modifies the shape of 1

σ
dσ
dν . FSI reduces the cross section

at the peak and increases the cross section at the tails of the
distribution.

In contrast to the spectral function formalism, predictions
using the ψ ′ superscaling formalism [14,15] fully describe
the longitudinal response function of quasielastic electron
scattering data on nuclear targets. This is expected since the
calculations use a ψ ′ superscaling function which is directly
extracted from the longitudinal component of measured elec-
tron scattering quasielastic differential cross sections.

However, although ψ ′ superscaling provides a very good
description of the final state lepton in QE scattering,ψ ′ super-
scaling is not implemented as an option in neutrino MC event
generators that are currently used in neutrino experiments.
There are specific technical issues that are associated with
implementing any theoretical model within the framework of
a MC generator. In addition,ψ ′ superscaling does not provide
a detailed description of the composition of the hadronic final
state. Therefore, it must also be combined with other models
to include details about the composition of the hadronic final
state.

Because the machinery to model both the leptonic and
hadronic final state for various spectral functions is already
implemented in all neutrino MC generators, adding another
spectral function as an option can be implemented in a few
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days. In this communication we present the parameters for a
new effective spectral function that reproduces the kinematics
of the final state lepton predicted by ψ ′ superscaling. The
momentum distribution for this ESF for 12C is shown as the
blue line in Fig. 2.

1.3 The ψ ′ superscaling functions for QE scattering

The ψ scaling variable [14,15] is defined as:

ψ ≡ 1√
ξF

λ− τ
√
(1 + λ)τ + κ

√
τ(1 + τ)

, (1)

where ξF ≡
√

1 + η2
F − 1, ηF ≡ KF/Mn , λ ≡ ν/2Mn ,

κ ≡ |q|/2Mn and τ ≡ |Q2|/4M2
n = κ2 − λ2.

The ψ ′ superscaling variable includes a correction that
accounts for the removal energy from the nucleus. This is
achieved by replacing ν with ν − Eshift, which forces the
maximum of the QE response to occur at ψ ′ = 0. This is
equivalent to taking λ → λ′ = λ − λshift with λshift =
Eshift/2Mn and correspondingly τ → τ ′ = κ2 − λ′2 in
Eq. (1). QE scattering on all nuclei (except for the deuteron)
is described using the same universal superscaling function.
The only parameters which are specific to each nucleus are
the Fermi broadening parameter KF and the energy shift
parameter Eshift.

Figure 3 shows two parametrizations of ψ ′ superscaling
functions extracted from quasielastic electron scattering data
on 12C. Shown is the ψ ′ superscaling distribution extracted
from a fit to electron scattering data used by Bosted and
Mamyan [15] (solid black line labeled as 2012), and the
superscaling function extracted from a recent updated fit [16]
to data from a large number of quasielastic electron scatter-
ing experiments on 12C (dotted red line labeled as 2014). The
panel on top shows the superscaling functions on a a linear
scale and the panel on the bottom shows the same superscal-
ing functions on a logarithmic scale.

The 2014 ψ ′ superscaling function is given by:

F(ψ ′) = 1.3429

KF [1 + 1.71192(ψ ′ + 0.19525)2](1 + e−1.69ψ ′
)

(2)

The 2012 ψ ′ superscaling function is given by:

F(ψ ′) = 1.5576

KF [1 + 1.77202(ψ ′ + 0.3014)2](1 + e−2.4291ψ ′
)

(3)

For both the 2012 and 2014 parametrizations the values of
the Fermi motion parameter KF and energy shift parameter
Eshift (given in Table 1) are taken from ref. [15].

The ψ ′ superscaling function is extracted from the longi-
tudinal QE cross section for Q2 > 0.3 GeV2 where there are
no Pauli blocking effects. At very low values of Q2, the QE

Fig. 3 The ψ ′ superscaling distribution extracted from a fit to elec-
tron scattering data used by Bosted and Mamyan [15] (solid black line
labeled as 2012), and the superscaling function extracted from a more
recent updated fit [16] to data from a large number of quasielastic elec-
tron scattering experiments on 12C (dotted red line labeled as 2014).
The panel on top shows the superscaling functions on a a linear scale
and the panel on the bottom shows the same superscaling functions on
a logarithmic scale. The integral of the curve has been normalized to
unity

Table 1 Values of Fermi-broadening parameter K F and energy shift
Eshift used in the ψ ′ superscaling prediction for different nuclei. The
parameters for deuterium (A=2) are to be taken as a crude approximation
only, and deuterium is treated differently as discussed in Sect. 5

A K F (ψ
′) (GeV) Eshift(ψ

′) (GeV)

2 0.100 0.001

3 0.115 0.001

3 < A < 8 0.190 0.017

7 < A < 17 0.228 0.0165

16 < A < 26 0.230 0.023

25 < A < 39 0.236 0.018

38 < A < 56 0.241 0.028

55 < A < 61 0.241 0.023

A > 60 0.245 0.018

differential cross sections predicted by the ψ ′ superscaling
should be multiplied by a Pauli blocking factor K nuclei

Pauli (Q
2)

which reduces the predicted cross sections at low Q2. The
Pauli suppression factor (see Fig. 20) is given [15] by the
function

K nuclei
Pauli = 3

4

|q|
KF

(
1 − 1

12
(
|q|
KF

)2
)

(4)
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For |q| < 2KF , otherwise no Pauli suppression correction
is made. Here |q| = √

Q2 + ν2 is the absolute magnitude of
the momentum transfer to the target nucleus,

In this paper we show that the normalized differential
quasielastic cross section 1

σ
dσ
dν (Q

2, ν) predicted by the ψ ′
superscaling formalism can be well described by predictions
of a modified effective spectral function (ESF). The param-
eters of the ESF are obtained by requiring that the ESF pre-
dictions for 1

σ
dσ
dν (Q

2, ν) at Q2 values of 0.1, 0.3, 0.5 and 0.7
GeV2 be in agreement with the predictions of the 2014 ψ ′
superscaling function given in Eq. 3.

The predictions of the ψ ′ formalism are given by

1

σ

dσ

dν
(Q2, ν) = 1

N
F(ψ ′)

where N the integral of F(ψ ′)dν over all values of ν (for a
given value of Q2).

1.4 Comparison of models for quasielastic scattering

For electron scattering, the nuclear response function is
extracted from the normalized longitudinal differential cross
section at a fixed vale of Q2 ( 1

σ
dσ
dν (Q

2, ν)). Hereσ is the inte-
gral of dσ

dν for a fixed value of Q2. The normalization removes
the effects of the Q2-dependent nucleon vector form factors.
In models which assume scattering from independent nucle-
ons, the response functions for the longitudinal and trans-
verse QE cross sections are the same.

For neutrino scattering at high energy, the QE cross sec-
tion is dominated by the structure function W2. Therefore, in
models which assume scattering from independent nucleons
the normalized cross section ( 1

σ
dσ
dν (Q

2, ν)) at a fixed value
of Q2 at high neutrino energy is also equal to the nuclear
response function.

For the neutrino case, the normalization removes the
effects of the Q2-dependent nucleon vector and axial form
factors. Figure 4 shows predictions for the normalized QE
differential cross sections 1

σ
dσ
dν (Q

2, ν) for 10 GeV neutri-
nos on 12C at Q2=0.5 GeV2 for various spectral functions.

Here 1
σ

dσ
dν is plotted versus 
ν = ν − Q2

2Mp
. The prediction

of the ψ ′ superscaling formalism for 1
σ

dσ
dν (Q

2, ν) is shown
as the solid black line. The solid green line is the prediction
using the “Global Fermi” gas [9–11] momentum distribution
given in Appendix B (eq. 33). The solid red line is the pre-
diction using the Local Thomas Fermi gas (LTF) momentum
distribution. The dotted purple line is the NuWro prediction
using the full two dimensional Benhar-Fantoni [12,13] spec-
tral function. The predictions of all of these spectral functions
for 1

σ
dσ
dν (Q

2, ν) are in disagreement with the predictions of
the ψ ′ superscaling formalism.

Fig. 4 Comparison of theψ ′ superscaling prediction (solid black line)
for the normalized 1

σ
dσ
dν (Q

2, ν) at Q2 = 0.5 GeV2 for 10 GeV neutrinos
on 12C to the predictions of several spectral function models. Here
1
σ

dσ
dν (Q

2, ν) is plotted versus 
ν The curve labeled “Global Fermi”
gas is the distribution for the Fermi gas model given in Appendix B (Eq.
33). The predictions of the spectral function models are in disagreement
with the predictions of ψ ′ superscaling

2 Effective spectral function for 12C

2.1 Momentum distribution

The probability distribution for a nucleon to have a momen-
tum k = |k| in the nucleus is defined as

P(k)dk = 4πk2|φ(k)|2dk.

For k < 0.65 GeV, we parametrize [19] P(k) by the follow-
ing function:

P(k) = π

4c0

1

N
(as + ap + at )y

2 (5)

where

y = k

c0

as = c1e−(bs y)2

ap = c2(bp y)2e−(bp y)2

at = c3 yβe−α(y−2)

For k > 0.65 GeV we set P(k) = 0. Here, c0 = 0.197, k is in
GeV, N is a normalization factor to normalize the integral of
the momentum distribution from k=0 to k=0.65 GeV to 1.0,
and P(k) is in units of GeV−1. The parameters that describe
the projected momentum distribution [19] for the Benhar-
Fantoni [12,13] spectral function for nucleons bound in 12C
are given in the second column of Table 2.

2.2 Removal energy

The kinematics for neutrino charged current quasielastic scat-
tering from a off-shell bound neutron with momentum k and
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Table 2 A comparison of the parameters that describe the projected
momentum distribution for the Benhar-Fantoni spectral function for
nucleons bound in 12C (2nd column) with the parameters that describe
the effective spectral function (ESF) for 12C (3rd column). Here, 
 is
the average binding energy parameter of the spectator one-hole nucleus
for the 1p1h process and f1p1h is the fraction of the scattering that
occurs via the 1p1h process. For the 2p2h process the average binding
energy for the two-hole spectator nucleus is 2
. The parameters for
the effective spectral function for deuterium (2H) are given in the 4th
column

Parameter Benhar-Fantoni ESF ESF

Nucleus 12C 12C 2H


 (MeV) 2Dspectral 12.5 0.13

f1p1h 2Dspectral 0.808 0

f2p2h 2Dspectral 0.192 1.00

bs 1.7 2.12 0.413475

bp 1.77 0.7366 1.75629

α 1.5 12.94 8.29029

β 0.8 10.62 3.621 x10−3

c1 2.823397 197.0 0.186987

c2 7.225905 9.94 6.24155

c3 0.00861524 4.36 x10−5 2.082 x10−4

N 0.985 29.64 10.33

energy En are given by:

(M ′
n)

2 = (En)
2 − V k2 (6)

M2
p = (M ′

n)
2 + 2Enν − 2|q|kz − Q2

ν = Eν − Eμ = Q2 + M2
p − (M ′

n)
2 + 2|q|kz

(En)

V (Q2) = 1 − e−x Q2
, x = 12.04 (7)

For scattering from a single off-shell nucleon, the term
V (Q2)multiplying k2 in Eqs. 6, 8 and 9 (and also Eqs. 21, 22,
and 23) should be 1.0. However, we find that in order to make
the spectral function predictions agree with ψ ′ superscaling
at very low Q2 (e.g. Q2 < 0.3 GeV 2) we need to apply a
Q2-dependent correction to reduce the removal energy, e.g.
due to final state interaction (of the first kind) at low Q2. This
factor is given in Eq. 7 and plotted in Fig. 5.

The value of the parameter x=12.04 GeV−2 was extracted
from the fits discussed in section 2.2.4. As mentioned ear-
lier, q is the momentum transfer to the neutron. We define
the component of the initial neutron momentum k which is
parallel to q as kz . The expression for En depends on the
process and is given by Eqs. 8 and 9 for the 1p1h, and 2p2h
process, respectively.

We assume that the off-shell energy (En) for a bound neu-
tron with momentum k can only take two possible values

Fig. 5 The Q2-dependent correction that accounts for the reduction of
the removal energy at low Q2, e.g. due to final state interaction (of the
first kind)

[17,18]. We refer to the first possibility as the 1p1h process
(one proton, one hole in the final state). The second possibil-
ity is the 2p2h process(two protons and two holes in the final
state).

In our effective spectral function model the 1p1h process
occurs with probability f1p1h , and the 2p2h process occurs
with probability of 1− f1p1h . For simplicity, we assume that
the probability f1p1h is independent of the momentum of the
bound nucleon.

2.2.1 The 1p1h process

The 1p1h process refers to scattering from an independent
neutron in the nucleus resulting in a final state proton and a
hole in the spectator nucleus. Figure 1 illustrates the 1p1h
process (for Q2 > 0.3 GeV2), for the scattering from an off-
shell bound neutron of momentum −k in a nucleus of mass
A [17,18]. In the 1p1h process, momentum is balanced by
an on-shell recoil [A − 1]∗ nucleus which has momentum
P∗

A−1 = Ps = k and an average binding energy parameter

, where MA − M∗

A−1 = Mn +
. The initial state off-shell
neutron has energy En which is given by:

En(1p1h) = MA −
√

V k2 + (M∗
A−1)

2

≈ Mn −
− V k2

2M∗
A−1

(8)

The final state includes a proton and an [A − 1]∗ nucleus
which is in an excited state because the removal of the
nucleon leaves hole in the energy levels of the nucleus.

For the 1p1h process, the removal energy of a nucleon
includes the following two contributions:
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Fig. 6 2p2h process: Scattering from an off-shell bound neutron of
momentum Pi = −k from two nucleon correlations (quasi-deuteron).
The on-shell recoil spectator nucleon has momentum Ps = k

– The binding energy parameter 
 where MA − M∗
A−1 =

Mn +
.
– The kinetic energy of the recoil spectator nucleus V k2

2M∗
A−1

.

2.2.2 The 2p2h process

In general, there are are several processes which result in two
(or more) nucleons and a spectator excited nucleus with two
(or more) holes in final state:

– Two nucleon correlations in initial state (quasi deuteron)
which are often referred to as short range correlations
(SRC).

– Final state interaction (of the first kind) resulting in a
larger energy transfer to the hadronic final state (as mod-
eled by superscaling).

– Enhancement of the transverse cross sections (“Trans-
verse Enhancement”) from meson exchange currents
(MEC) and isobar excitation.

In the effective spectral function approach the lepton
energy spectrum for all three processes is modeled as orig-
inating from the two nucleon correlation process. This
accounts for the additional energy shift resulting from the
removal of two nucleons from the nucleus.

Figure 6 illustrates the 2p2h process for scattering from
an off-shell bound neutron of momentum −k (for Q2 > 0.3
GeV2). The momentum of the interacting nucleon in the ini-
tial state is balanced by a single on-shell correlated recoil
nucleon which has momentum k. The [A − 2]∗ spectator
nucleus is left with two holes. The initial state off-shell neu-
tron has energy En which is given by:

En(2p2h) = (Mp + Mn)− 2
−
√

V k2 + M2
p (9)

where V is given by Eq. 7.
For the 2p2h process, the removal energy of a nucleon

includes the following two contributions:

Fig. 7 Comparison of energy for on-shell and off-shell bound neutrons
in 12C. The on-shell energy is En = √

k2 + M2
n . The off-shell energy

is shown for both the 1p1h (En = Mn −
− V k2

2M∗
A−1

) and 2p2h process

(En = (Mp + Mn)− 2
−
√

V k2 + M2
p , where (Mp + Mn) and 
 is

the average binding energy parameter of the spectator one-hole nucleus.
Shown is the case with V = 1. (The factor V is given in Eq. 7 and plotted
in Fig. 5. V≈1 for Q2 >0.3 GeV2)

– The binding energy parameter 2
where MA − M∗
A−2 =

Mn + Mp + 2
.
– The kinetic energy of the recoil spectator nucleon given

by
√

V k2 + M2
p.

Figure 7 shows a comparison of the total energy for on-
shell and off-shell bound neutrons in 12C as a function
of neutron momentum k (for Q2 > 0.3 GeV2 where
V≈1.0). The energy for an unbound on-shell neutron is
En = √

V k2 + M2
n . The off-shell energy of a bound neutron

is shown for both the 1p1h (En = Mn −
− Vk2

2M∗
A−1

) and the

2p2h process (En = (Mp + Mn)− 2
−
√

V k2 + M2
p).

In the effective spectral function approach, all effects of
final state interaction (of the first kind) are absorbed in the
initial state effective spectral function. The parameters of
the effective spectral function are obtained by finding the
parameters x , 
, f1p1h , bs , bp, α, β, c1, c2, c3 and N for
which the predictions of the effective spectral function best
describe the predictions of theψ ′ superscaling formalism for
(1/σ)dσ/dν at Q2 values of 0.1, 0.3, 0.5 and 0.7 GeV2.

Figure 8 compares predictions for 1
σ

dσ
dν (Q

2, ν) for 12C
as a function of 
ν at Q2=0.5 GeV2. The prediction of the
effective spectral function is the dashed blue curve. The pre-
diction of theψ ′ superscaling model is the solid black curve.
For Q2=0.5 GeV2 the prediction of the effective spectral
function is almost identical to the prediction ofψ ′ superscal-
ing. All of the prediction for the effective spectral function
are calculated from Eq. 28 in Appendix B.
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Fig. 8 Comparison of the prediction for the normalized QE differential
cross section ( 1

σ
dσ
dν (Q

2, ν)) for 12C from the effective spectral function
to the prediction of ψ ′ superscaling. The predictions are shown as a
function of 
ν at Q2 = 0.5 GeV2. The prediction of the effective
spectral function are calculated from Eq. 28 in Appendix B. For Q2 =
0.5 GeV2 the prediction of the effective spectral function are almost
identical to the prediction of ψ ′ superscaling

For the 2p2h process, each of the two final state nucleons
can also undergo final state interactions (of the second kind)
with other nucleons in the spectator [A − 2]∗ nucleus.

2.2.3 Comparison of the 1p1h and 2p2h contributions

The top panel of Fig. 9 shows the prediction of the effective
spectral function model for 1

σ
dσ
dν (Q

2, ν) for QE scattering
from a 12C nucleus at Q2 = 0.5 GeV2, assuming that only
the 1p1h process contributes. The bottom panel of Fig. 9
shows the prediction of the effective spectral function model
for 1

σ
dσ
dν (Q

2, ν) for QE scattering from a 12C nucleus at Q2

= 0.5 GeV2 assuming that only the 2p2h process contributes.
We find that the effective spectral function with only the

1p1h process provides a reasonable description of the pre-
diction ofψ ′ superscaling. Including a contribution from the
2p2h process in the fit improves the agreement and results in
a prediction which is almost identical to the prediction of ψ ′
superscaling.

For reference, figures 9-12 also show the prediction for
the Fermi Gas model in blue, and the predictions from the
Bodek-Ritchie [17,18] Fermi gas model which includes a
high momentum contribution from two nucleon correlations
in green. These predictions are calculated for 10 GeV neu-
trinos using the the GENIE neutrino Monte Carlo generator.

2.2.4 Comparisons as a function of Q2 for Q2 > 0.3 GeV2

Figures 10 and 11 show a comparison of the prediction of
the effective spectral function for 1

σ
dσ
dν (Q

2, ν) for 12C to the

(a)

(b)

Fig. 9 Comparison of the two contributions to the normalized QE cross
section ( 1

σ
dσ
dν (Q

2, ν)) for 12C from the effective spectral function. (a)
For the 1p1h component, (b) For the 2p2h component. Here, each con-
tribution (shown in red) is normalized to 1.0. Also shown (for reference)
are the predictions for superscaling (black line), for the Fermi Gas model
(blue), and the predictions from the Bodek-Ritchie [17,18] Fermi gas
model which includes a high momentum contribution from two nucleon
correlations (green)

predictions of the ψ ′ superscaling formalism for Q2 values
of 0.3, 0.5, 0.7, 1.0, 1.2, 1.5 and 2.0 and GeV2.

In principle, it should not be possible for a spectral func-
tion approach to exactly reproduceψ ′ superscaling at all val-
ues of Q2. Nonetheless, the parameters which we optimized
for Q2 values of 0.3, 0.5 and 0.7 GeV2 also provide a good
description of 1

σ
dσ
dν (ν) for Q2 values of 1.0, 1.2, 1.5 and 2.0

GeV2.

2.2.5 Comparisons as a function of Q2 for Q2 < 0.3 GeV2

The low Q2 suppression factor of the removal energy which is
given in Eq. 7 is introduced in order to reproduce predictions
of the ψ ′ superscaling model at Q2 < 0.3 GeV2.

Figure 12 shows a comparison of the prediction for the
shape ( 1

σ
dσ
dν (Q

2, ν)) of the quasielastic peak for 12C from
the effective spectral function (red) to the predictions of the
ψ ′ superscaling model (black). The predictions are shown
as a function of 
ν for Q2 = 0.1 GeV2. The top panel
show the predictions without the low Q2 correction factor
to the removal energy. The bottom panel shows the predic-
tions including the low Q2 correction factor to the removal
energy, e.g. from final state interaction (of the first kind) at
low Q2.
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Fig. 10 Comparison of the prediction for the normalized QE cross
section ( 1

σ
dσ
dν (Q

2, ν)) for 12C from the effective spectral function (red)
to the predictions of theψ ′ superscaling model (black). The predictions
are shown as a function of 
ν for Q2 values of 0.3, 0.5, 0.7, 1.0, and
1.2 GeV2. Also shown (for reference) are the predictions for the Fermi
Gas model in blue, and the predictions from the Bodek-Ritchie [17,18]
Fermi gas model which includes a high momentum contribution from
two nucleon correlations in green

Fig. 11 Comparison of the prediction for the normalized QE cross
section ( 1

σ
dσ
dν (Q

2, ν)) for 12C from the effective spectral function (red)
to the predictions of theψ ′ superscaling model (black). The predictions
are shown as a function of 
ν for Q2 values of 1.5 and 2.0 GeV2.
Also shown (for reference) are the predictions for the Fermi Gas model
in blue, and the predictions from the Bodek-Ritchie [17,18] Fermi gas
model which includes a high momentum contribution from two nucleon
correlations in green

Also shown (for reference) is the prediction for superscal-
ing in black, the prediction for the Fermi Gas model in blue,
and the predictions from the Bodek-Ritchie [17,18] Fermi
gas model which includes a high momentum contribution
from two nucleon correlations in green.

3 Spectral functions for other nuclei

Figure 13 shows the predictions for the shape of the quasielas-
tic peak ( 1

σ
dσ
dν (ν)) from the best fit effective spectral function

(top panel) as compared to the predictions ofψ ′ superscaling
model (bottom panel) for different nuclei. The predictions are
shown as a function of
ν for Q2=0.5 GeV2.Figure 14 shows
the momentum distribution of the effective spectral function
for various nuclei, and Table 3 gives the parameterizations
of the effective spectral function for various nuclei.

4 Transverse enhancement and multi nucleon processes

Both spectral functions and the ψ ′ superscaling formalism
model QE scattering in terms of scattering from indepen-
dent nucleons in the initial state. The independent nucleon
approach works well in modeling the longitudinal (electric)
cross section for QE electron scattering from nuclear tar-
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Fig. 12 Comparison of the prediction for the normalized QE cross
section ( 1

σ
dσ
dν (Q

2, ν)) for 12C from the effective spectral function (red)
to the predictions of theψ ′ superscaling model (black). The predictions
are shown as a function of
ν for Q2 = 0.1 GeV2. The top panel show
the predictions without the low Q2 correction factor to the removal
energy, The bottom panel shows the predictions including the low Q2

correction factor to the removal energy e.g. from final state interaction
(of the first kind) at low Q2. Also shown (for reference) is the prediction
for superscaling in black, the predictions for the Fermi Gas model in
blue, and the predictions from the Bodek-Ritchie [17,18] Fermi gas
model which includes a high momentum contribution from two nucleon
correlations in green

Fig. 13 Predictions for the normalized QE cross section ( 1
σ

dσ
dν (Q

2, ν))
from the effective spectral function (top panel) as compared to the
predictions of ψ ′ superscaling (bottom panel) for different nuclei. The
predictions are shown as a function of 
ν for Q2=0.5 GeV2

Fig. 14 The momentum distributions for the effective spectral function
for various nuclei (3He, 4He, 12C 20Ne, 56Fe, and 208Pb). In the analysis
we set all distributions to zero for k >0.65 GeV

gets. However, it is known that none of the independent
nucleon models can describe the transverse (magnetic) part
of the QE electron scattering cross section. The transverse
cross section is larger than the predictions of the indepen-
dent nucleon model, and the enhancement is a function of
Q2. This experimental observation is usually referred to as
“Transverse Enhancement” (TE).

TE has been attributed to multi nucleon processes such
as meson exchange currents and isobar excitation. There are
two ways to account for these multi nucleon effects.

4.1 Accounting for contributions from multi nucleon
processes

One way to account for TE is to use specific theoretical mod-
els to estimate the contributions from various multi nucleon
processes such as meson exchange currents and isobar exci-
tation. The differences between various model may provide
an indication of the uncertainties of the calculations.

4.2 The transverse enhancement (TE) model

Another way to account for transverse enhancement is to
parameterize the experimentally observed excess in the elec-
tron scattering data in a model independent way. In the TE
model [27] this is done by modifying the magnetic form fac-
tors for bound nucleons.

As was done in reference [27], we have re-extracted the
integrated transverse enhancement ratio RT , where

RT = (QEtransverse + T E)exp

(QEtransverse)model
,

from electron scattering data from the JUPITER collabora-
tion [29]. Here (QEtransverse + T E)exp is the experimen-
tally observed integrated transverse QE cross section and
(QEtransverse)model is the integrated transverse QE cross
section predicted by ψ ′ super scaling.
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Table 3 Parameterizations of the effective spectral function for various nuclei. Here, 
 is the binding energy parameter, and f1p1h is the fraction
of the scattering that occurs via the 1p1h process. For deuterium (2H) are see Table 2

Parameter 3He 4He 12C 20Ne 27Al 40Ar 56Fe 208Pb


(MeV) 5.3 14.0 12.5 16.6 12.5 20.6 15.1 18.8

f1p1h 0.312 0.791 0.808 0.765 0.774 0.809 0.822 0.896

bs 3.06 2.14 2.12 1.82 1.73 1.67 1.79 1.52

bp 0.902 0.775 0.7366 0.610 0.621 0.615 0.597 0.585

α 10.93 9.73 12.94 6.81 7.20 8.54 7.10 11.24

β 6.03 7.57 10.62 6.08 6.73 8.62 6.26 13.33

c1 199.6 183.4 197.0 25.9 21.0 200.0 18.37 174.4

c2 1.92 5.53 9.94 0.59 0.59 6.25 0.505 5.29

c3 5.26x10−5 59.0x10−5 4.36 x10−5 221. x10−5 121.5 x10−5 269.0x10−5 141.0 x10−5 9.28x10−5

N 6.1 18.94 29.64 4.507 4.065 40.1 3.645 37.96

Fig. 15 Top panel: Electron scattering data. The ratio of the transverse
QE cross section with TE to the transverse cross section for free nucleons
as a function of Q2. Bottom panel: The ratio of dσ/d Q2 neutrino QE
cross ion carbon (with TE) to the sum of free nucleon cross sections as
a function of Q2 for neutrino and antineutrino energies above 3 GeV

The top panel of Fig. 15 shows experimental values of RT

as a function of Q2. The black points are extracted from Carl-
son et al [28], and the higher Q2 are re-extracted from QE
data from the JUPITER collaboration [29]. The Q2 depen-
dence of RT is parametrized by the expression:

RT = 1 + AQ2e−Q2/B

with A=5.194 and B=0.376 GeV2. The electron scattering
data indicate that the transverse enhancement is maximal
near Q2=0.3 GeV2 and is small for Q2 greater than 1.5 GeV2

This parametrization is valid for carbon (A=12) (it is also an
approximate representation for higher A nuclei).

We assume that the enhancement in the transverse QE
cross section can be described by a modification ofGV

M (Q
2)=

G Mp(Q2)− G Mn(Q2) for nucleons bound in carbon, where
G Mp and G Mn are the magnetic form factor of the proton
and neutron, respectively (as measured in electron scattering
experiments). We use the parametrization of RT to modify
G Mp and G Mn for bound nucleons as follows.

Gnuclear
Mp (Q2) = G Mp(Q

2)×
√

1 + AQ2e−Q2/B

Gnuclear
Mn (Q2) = G Mn(Q

2)×
√

1 + AQ2e−Q2/B . (10)

Transverse enhancement increases the overall neutrino and
antineutrino cross sections and changes the shape of the dif-
ferential cross section as a function of Q2 as shown in the
bottom panel of Fig. 15.

Figure 16 shows the neutrino and antineutrino QE cross
sections on 12C with TE and without TE as a function of
neutrino energy. The cross section for neutrinos is shown on
the top panel and the cross section for antineutrinos is shown
in bottom panel. Figure 17 shows the ratio of the neutrino
and antineutrino QE cross sections on 12C with TE to the
sum of free nucleon cross sections as a function of energy.
The ratio for neutrinos is shown in the top panel and the ratio
for antineutrinos is shown inn the bottom panel. On average
the overall cross section is increased by about 18%.

Note that TE is a 2p2h process. Therefore, when TE is
included in the model prediction, the relative fractions of the
1p1h and 2p2h should be changed as follows:

123



Eur. Phys. J. C (2014) 74:3091 Page 11 of 17 3091

Fig. 16 The neutrino QE cross section on carbon with TE and without
TE as a function of neutrino energy. The cross section for neutrinos is
shown on the top panel and the cross section for antineutrinos is shown
in bottom panel

f (wi th T E)
1p1h = f1p1h

1.18

f (wi th T E)
2p2h = f2p2h + 0.18

1.18
(11)

In the above prescription, the energy sharing between the two
nucleons in the final state for the 2p2h TE process is the same
as for the 2p2h process from short range two nucleon cor-
relations. We can make other assumptions about the energy
sharing between the two nucleus for the TE process. For
example one can chose to use a uniform angular distribution
of the two nucleons in the center of mass of the two nucle-
ons as is done in NuWro [6,7]. This can easily be done in a
neutrino MC event generator, since once the events are gen-
erated, one can add an additional step and change the energy
sharing between the two nucleons.

In summary, we extract the TE contribution by taking the
difference between electron scattering data and the predic-
tions of the ψ ′ formalism for QE scattering. Therefore, pre-
dictions using ESF for QE with the inclusion of the TE contri-
bution fully describe electron scattering data by construction.

Including the TE model in neutrino Monte Carlo genera-
tors is relatively simple. The first step is to modify the mag-
netic form factors for the proton and neutron as given in Eq.
10. This accounts for the increase in the integrated QE cross
section. The second step is to change the relative faction of

Fig. 17 The ratio of the total neutrino QE cross section on carbon
with TE to sum of free nucleon cross sections as a function of energy.
The ratio for neutrinos is shown on the top panel and the ratio for
antineutrinos is shown in bottom panel. On average the overall cross
section is increased by about 18%

the 1p1h and 2p2h process as given in Eq. 11, which changes
shape of the QE distribution in ν.

The effective spectral function model and the TE model
are not coupled. One can use the effective spectral function to
describe the scattering from independent nucleons, and use
another theoretical model to account for the additional con-
tribution from multi nucleon process. Alternatively, one can
use an alternative model for the scattering from independent
nucleons and use the TE model to account for the additional
contribution from multi nucleon processes.

5 Effective spectral functions for deuterium

Neutrino charged current QE cross sections for deuterium
are not modeled in current neutrino Monte Carlo generators.
We find that neutrino interactions on deuterium can also be
modeled with an effective spectral function.

We use the theoretical calculations of reference [20] to
predict the shape of the transverse differential cross section
( 1
σ

dσ
dν (Q

2, ν)) for deuterium at several values of Q2 as a
function of
ν = ν− Q2/2M . These theoretical calculations
are in agreement with electron scattering data. We tune the
parameters of the effective spectral function to reproduce the
spectra predicted by the theoretical calculations of reference
[20].

123



3091 Page 12 of 17 Eur. Phys. J. C (2014) 74:3091

Fig. 18 Comparisons of model predictions for 1
σ

dσ
dν (Q

2, ν) as a func-
tion of
ν = ν− Q2/2M for QE electron scattering on the deuterium at
Q2 = 0.5 GeV2. The solid black line is the prediction from reference
[20] (which agrees with electron scattering data). The red line is the
prediction of the best fit parameters for effective spectral function the
deuteron. The blue line is the prediction for a Fermi gas with a Fermi
momentum K F = 0.100 GeV. The predictions with the effective spectral
function are in agreement with the calculations of reference [20]

Figure 18 shows comparisons of model predictions for
1
σ

dσ
dν (Q

2, ν) for QE electron scattering on deuterium as a
function of 
ν = ν − Q2/2M at Q2=0.5 GeV2. The solid
black line is the prediction from reference [20]. The red line
is the prediction of the best fit parameters for the effective
spectral function for deuterium. For comparison we also
show (in blue) the prediction for a Fermi gas model with
Fermi momentum KF = 0.100 GeV. A comparison between
the momentum distribution for the effective spectral function
for deuterium and the momentum distribution for a Fermi gas
with KF = 0.100 GeV is shown in Fig. 19

For reference, we note that the current default version of
GENIE cannot be used nuclei with atomic weight A < 7.
This is because GENIE uses KF = 0.169 GeV (which has
been extracted by Moniz [9–11] for 3Li6) for all nuclei
which have atomic weight A < 7. GENIE with the imple-
mentation of the effective spectral function can be used for
all nuclei. Recently, the effective spectral function has been
implemented as an option in private versions of NEUT [30]
and GENIE [31].

The best fit parameters for the effective spectral function
for deuterium are given in Table 2. For deuterium, the 2p2h
process is the only process that can happen .

6 Pauli suppression

The Pauli suppression in deuterium is smaller than the Pauli
suppression in heavier nuclei. The multiplicative Pauli sup-
pression factor for charged current neutrino scattering on
deuterium K deuteron

Pauli has been calculated by S. K. Singh
[21,22]. K deuteron

Pauli can be parametrized [23,24] by the fol-

Fig. 19 The momentum distribution for the effective spectral function
for deuterium (shown in red). Also shown (in blue) is the momentum
distribution for a Fermi gas with K F = 0.10 GeV. Note that we set the
probability to zero for k > KM where KM = 0.65 GeV

Fig. 20 A comparison of the Pauli suppression factor K Pauli for
carbon and the deuteron as a function of the square of the four
momentum transfers Q2. For the carbon factor (eq. 4) we assumed

|q| =
√

Q2(1 + Q2/(4M2
p))

lowing function.

K deuterium
Pauli = 1 − AeB(Q2)C (12)

where, A=0.588918, B=-17.2306, C= 0.749157. A compar-
ison of the Pauli suppression factors for 12C (Eq. 4) and
deuterium (Eq. 12) is shown in Fig. 20. Note that Pauli sup-
pression in deuterium occurs only in neutrino charged current
processes (because there are two protons in the final state).
There is no suppression for electron scattering or neutrino
neutral current processes.

7 Conclusion

We present parameters for an effective spectral function that
reproduce the prediction for 1

σ
dσ
dν (Q

2, ν) from the best cur-
rently available models for charged current QE scattering on
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nuclear targets. We present parameters for a large number of
nuclear targets from deuterium to lead.

Since most of the currently available neutrino MC event
generators model neutrino scattering in terms of spectral
functions, the effective spectral function can easily be imple-
mented. For example, it has taken only a few days to imple-
ment the effective spectral function as an option in recent
private versions of NEUT [30] and GENIE [31].

The predictions using ESF for QE with the inclusion of
the TE contribution fully describe electron scattering data by
construction.
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Appendix A: Fermi smearing in the resonance region

The method of Bosted and Mamyan

Bosted and Mamyan [15] model Fermi motion effects for
electron scattering data in the resonance and deep inelastic
region by smearing the structure function W1(W ′, Q2) on
free nucleons to obtain the Fermi smeared structure function
W F

1 (W, Q2). The smearing is done over (W ′)2 (which is
the square of the mass of the hadronic final state) at fixed
values of Q2. Bosted and Mamyan [15] use the following
prescription.

W F
1 (W

2, Q2) =
∑

i=1 to 99

[Z W p
1 ((W

′
i )

2, Q2)

+ (A − Z)W n
1 ((W

′
i )

2, Q2)] fi (ξi ) (13)

where the sum approximates an integral. Here, W p
1 and W n

1
are the free proton [26] and neutron [25] structure functions.

The shifted values (W ′
i )

2 are defined as

(W ′
i )

2 = W 2 + ξi KF |q| − 2Eshift(ν + M) (14)

where ξ = 2kz/KF , and Eshift is the energy shift parameter.
In the sum they use 99 values of ξi

ξi = −3 + 6(i − 1)/98 (15)

In the above equation fi (ξ) is the normalized probability for
a nucleon to have a fractional longitudinal momentum ξ =
2kz/KF . Bosted and Mamyan use the following normalized
Gaussian for the probability.

P B M (kz) = P B M (ξ) = N (ξ = 0, σξ = 1) (16)

(a)

(b)

Fig. 21 (a) A comparison of the probability distribution P(kz) for 12C
plotted versus the variable ξ = 2kz/K F for several spectral functions.
(b) The average value of the square of nucleon moment k2 for the ESF
for 12C versus the square of its z component, k2

z , shown in the form of
4 < k2 > /K 2

F versus ξ2 = 4k2
z /K 2

F

which is equivalent to

fi = 0.0245e(−ξ2
i /2) (17)

The sum is a step-wise integration over a Gaussian whose
width is controlled by a Fermi momentum KF , truncated at
±3σ (ξi ranges from -3 to +3), with a shift in central W
related to the energy shift parameter Eshift. The values of KF

and Eshift used for the different nuclei are given in Table 1.

Fermi smearing in the resonance region using the effective
spectral function

We have calculated the probability P(kz) for the effective
spectral function (P E SF (kz)) for 12C. The top panel of Fig.
21 shows the probability distributions P(kz) plotted versus
the variable ξ = 2kz/KF for the effective spectral func-
tion as compared to the distribution used by Bosted and
Mamyan. Also shown is the probability distribution for the
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Table 4 Top half: Parameters for the parameterization of the one dimen-
sional projection along kz of the effective spectral function (P E SF (ξ))
for various nuclei. The parameters for deuterium are shown in the col-

umn labeled 2H. Bottom half: Parameters for the parameterization of
the the mean < k2 > as a function of kz

Parameter 2H 3He 4He 12C 20Ne 27Al 40Ar 56Fe 208Pb


(MeV) 0.13 5.3 14.0 12.5 16.6 12.5 20.6 15.1 18.8

f1p1h 0 0.312 0.791 0.808 0.765 0.774 0.809 0.822 0.896

g1 0.2181 0.2560 0.1325 0.03819 0.1063 0.1063 0.1019 0.07645 0.1474

g2 0.6402 0.4343 0.3818 0.4168 0.3443 0.3443 0.3529 0.3892 0.3366

σ1 0.4465 0.7321 0.5724 0.3688 0.5538 0.5538 0.5401 0.5049 0.5964

σ2 0.9920 1.459 1.054 0.910 0.9555 1.008 0.9416 0.9356 0.9792

σ3 3.233 3.126 2.122 1.928 1.870 1.935 1.873 1.889 1.900

K F (GeV) 0.100 0.115 0.190 0.228 0.230 0.236 0.241 0.241 0.245

a 97.79 27.87 0 15.07 11.02 15.18 14.18 13.50 14.14 13.96

b –0.2351 0.8118 0.6972 0.6772 0.5387 0.5466 0.5471 0.5252 0.5131

c 96.24 22.53 11.18 7.770 11.66 10.74 10.15 10.78 10.72

d 43.34 15.54 8.692 5.441 8.482 8.001 7.169 7.536 7.086

Fermi Gas model with KF =0.228. The effective spectral
function extends to higher momentum. In order to imple-
ment the effective spectral function we have fit P E SF (kz) to
a sum of three normal Gaussians with zero mean and differ-
ent standard deviations σξ = σi , and fractions g1, g2, and
g3 = 1 − g1 − g2.

P E SF (ξ) = g1N (σ1)+ g2N (σ2)+ g3N (σ3)

N (σ j ) = 1

σ j
√

2π
e−0.5ξ2/σ 2

j (18)

where g1 = 0.0382, g2 = 0.417, σ1 = 0.369, σ2 = 0.910,
and σ3 = 1.928. For smearing with the ξ distribution of the
effective spectral function we also use a 99 step integration
in ξi where,

ξi = −6 + 12(i − 1)/98

fi (ξ) = g1

8.1585
N (σ1)+ g2

8.1585
N (σ2)+ g3

8.1585
N (σ3)

(19)

Here, the sum is a step-wise integration over a Gaussian
whose width is controlled by a Fermi momentum KF , trun-
cated at ±6σ (ξi ranges from -6 to +6), with a shift in central
W related to removal energy. The values of KF used for the
different nuclei are given in Table 1.

Bosted and Mamyan calculate the shifted values of W ′
(Eq. 14) using a fixed value for the energy shift Eshift . Instead,
we calculate the shifted values of W ′ (Eq. 21) using the off-
shell neutron energies (En) for the 1p1h (Eq. 22) and 2p2h
(Eq. 22) processes, respectively. In order calculate the k-
dependent off-shell neutrino energies we need to find the
average k2 as a function of ξ .

The bottom panel of Fig. 21 shows the average value of the
square of nucleon moment < k2 > versus the square of its z

component (k2
z ) calculated for the effective spectral function

for 12C. What is shown specifically is 4 < k2 > /K 2
F as a

function of ξ2 = 4k2
z /K 2

F . We parameterize < k2 > by the
following function:

< k2(ξ2) >= K 2
F

4
(a + bξ2 − ce−ξ2/d) (20)

We repeat the analysis for all other nuclei. The top panel
of Fig. 22 shows P E SF (ξ = 2Kz/KF ) for light nuclei. The
middle panel shows P E SF (ξ)) for heavy nuclei, and the bot-
tom panel shows the mean < k2 > as a function of k2

Z pre-
sented as as 4 < k2 > /K 2

F versus (ξ2 = 4K 2
z /K 2

F ).
The parameters for nuclei from 2H to 208Pb are given in

Table 4. However, we note that aside from 2H (deuterium) and
3He, the functions for all nuclei are very similar. Therefore,
as a good approximation, the parameters for 12C can be used
for all nuclei above A=12, and also for 4He (provided that
the appropriate Fermi momentum for each nucleus as given
in Table 4 is used for each nucleus).

Smearing with the effective spectral function requires that
the shifted value of W ′

i are different for the the 1p1h and 2p2h
contributions.

W 2 = M2
n + 2Mnν − Q2

(M ′
n)

2 = (En)
2 − V k2

(W ′
i )

2 = (M ′
n)

2 + 2Enν − ξi KF |q| − Q2

Therefore,

(W ′
i )

2 = W 2 − ξi KF |q| − V < k2(ξ2) >

+ [(En)
2 − M2

n ] + 2ν[En − Mn] (21)

Here < k2(ξ2) > is given by Eq. 20.
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Fig. 22 Top panel: P E SF (ξ = 2Kz/K F ) for light nuclei. Middle
panel: P E SF (ξ) for heavy nuclei. Bottom panel: The mean < k2 >

as a function of k2
Z shown as 4 < k2 > /K 2

F versus (ξ2 = 4K 2
z /K 2

F ).
Aside from deuterium (labeled H2) and Helium 3 (labeled He3) the
functions for all nuclei are similar. Therefore, to a good approximation,
the functions for 12C can be used all nuclei above A=12, and also for
for Helium 4 (provided that the appropriate Fermi momentum for each
nucleus as given in Table 4 is used for each nucleus)
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Fig. 23 The results of Fermi motion smearing in 12C (K F = 0.2280
GeV) of the free nucleon cross sections in the resonance region using
the effective spectral function. The results are shown for several values
of Q2 and compared to the Fermi motion smearing used by Bosted and
Mamyan

As mentioned earlier, the term V (Q2) multiplying k2 in
Eqs. 6, 8, 9, 21, 22, and 23 should be 1.0. However, we
find that in order to make the spectral function agree with ψ ′
superscaling at very low Q2 (e.g. Q2 < 0.3 GeV2) we need to
apply a Q2-dependent correction of the form V = 1−e−x Q2

where x=12.04 GeV−2. This term, shown in Fig. 5, accounts
for the final state interaction (of the first kind) at low Q2.

For the 1p1h process En is given by Eq. 8, which when
plugged into Eq. 21 for (W ′

i )
2 yields the following expres-

sion:

(W ′
i )

2
1p1h = W 2 − ξi KF |q| − V < k2(ξ2) > (22)

− 2[ν + M][
+ V < k2(ξ2) >

2M∗
A−1

]

For the 2p2h process En is given by Eq. 9 which when
plugged into Eq. 21 for (W ′

i )
2 yields the following expres-

sion:
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(W ′
i )

2
2p2h = W 2 − ξi KF |q| − V < k2(ξ2)

> +[((Mp + Mn)− 2
−
√

V < k2(ξ2) > +M2
p)

2 − M2
n ]

+2ν[(Mp + Mn)− 2
−
√

V < k2(ξ2) > +M2
p − Mn]

(23)

When smearing the proton and neutron structure functions,
the 1p1h and 2p2h processes are weighted by the relative
fractions given in Table 4.

Figure 23 shows the results of Fermi motion smearing in
12C (KF = 0.2280 GeV) of the free nucleon cross sections
in the resonance region using the effective spectral function.
The results are shown for several values of Q2 and compared
to the Fermi motion smearing used by Bosted and Mamyan.
The spectra smeared with the effective spectral function are
are shifter to higher values of W 2.

Appendix B: Calculation of the shape of the quasielastic
peak

We calculate the shape of the quasielastic peak 1
σ

dσ
dν (Q

2, ν)

at fixed Q2 using the expressions below. The on-shell elastic
W2 structure function for the scattering of neutrinos on free
neutrons [27] is given by

W on−shell
2 = G(Q2)δ(ν − Q2/2M) (24)

where G(Q2) is given in terms of vector and axial form fac-
tors.

G(Q2) = |FV (Q
2)|2 + |FA(Q

2)|2 (25)

|FV (Q
2)|2 = [GV

E (Q
2)]2 + τ [GV

M (Q
2)]2

1 + τ
. (26)

From conserved vector current (CVC) GV
E (Q

2) and GV
M (Q

2)

are related to the electron scattering electromagnetic form
factors [32] G p

E (Q
2), Gn

E (Q
2), G p

M (Q
2), and Gn

M (Q
2):

GV
E (Q

2) = G p
E (Q

2)− Gn
E (Q

2),

GV
M (Q

2) = G p
M (Q

2)− Gn
M (Q

2).

The axial form factor FA can be approximated by the dipole
form

FA(Q
2) = gA

(
1 + Q2

M2
A

)2 ,

where gA = −1.267, and MA = 1.014 GeV [32]. Fits that
include modifications to dipole form for both vector and axial
form factors can be found in Ref. [32].

We note that when we calculate the shape of the QE peak
1
σ

dσ
dν (Q

2, ν) at fixed Q2 the function G(Q2) cancels out.

For the scattering from an off-shell nucleon, the energy
conservation δ function takes the following form:

M2
p = (M ′

n)
2 + 2Enν − 2|q|kz − Q2

ν = Q2 + 2|q|kz + M2
p − (M ′

n)
2

2En

W of f
2 = G(Q2)δ(ν − Q2 + 2|q|kz + M2

p − (M ′
n)

2

2En
) (27)

where kz = k cos θ . Here θ is the angle between the direc-
tion of the momentum transfer q and k. The shape of the
quasielastic peak 1

σ
dσ
dν (Q

2, ν) at fixed Q2 is then given by

dσ

dν
(Q2, ν) ∝

∫ KM

0
2π

∫ 1

−1
W of f

2 |φ(k)|2k2 d cos θ dk

(28)

where P(k) = |φ(k)|24πk2 is the probability distribution
for a nucleon to have a momentum k = |k| in the nucleus.
For all of the momentum distributions that we investigate we
set the probability to zero for k > KM where KM =0.65 GeV.

The shape of the quasielastic peak for the Fermi gas model

For the Fermi gas model we can get an approximate distri-
bution for dσ

dν (Q
2) in closed form. We use this calculation as

a check on our results which are obtained using Eq. 28.
For the Fermi gas model we do the calculation in cylin-

drical coordinate

(2πk2 d cos θ dk = πdk2
r dkz)

k =
√

k2
r + k2

z .

Equation 28 can then be written as

W of f
2 ∝ En

|q| δ(kz − 1

2|q| (2Enν − Q2 − M2
p + (M ′

n)
2)

dσ

dν
(Q2) ∝

∫ KF

−KF

∫ KF −k2
z

0
W of f

2 |φ(k)|2π dk2
r dkz (29)

For the Fermi gas model the momentum distribution is zero
for k > KF , and for k < KF it is given by

|φ(k)|2 = 1

N
N = 4

3
πK 3

F

P(k)dk = |φ(k)|24πk2dk = 1

N
4πk2dk (30)

For simplicity, we assume that the energy of the off shell
neutron is a constant which is independent of k. Using <
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k2 >= 3
5 K 2

F we obtain

< En > = Mn −
− 3K 2
F

10M∗
A−1

< (M ′
n)

2 > = < En >
2 −3K 2

F/5 (31)

dσ

dν
(Q2) ∝

∫ KF

−KF

∫ KF −k2
z

0
W of f

2 |φ(k)|2π dk2
r dkz

=
∫ KF

−KF

W of f
2

3

4K 3
F

(K 2
F − k2

z ) dkz (32)

Integrating the δ function in Eq. 27 over kz we get

kz = 1

2|q| [2 < En > ν − Q2 − M2
p+ < (M ′

n)
2 >]

1

σ

dσ

dν
(Q2, ν) = < En >

|q|
3

4

(K 2
F − k2

z )

K 3
F

. (33)

The above equation satisfies the normalization condition
∫
< En >

|q|
3

4

(K 2
F − k2

z )

K 3
F

dν = 1
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