47 research outputs found

    A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales

    Full text link
    The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plants” series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world

    Atmospheric Measurement Techniques Ten years of MIPAS measurements with ESA Level 2 processor V6 - Part 1: Retrieval algorithm and diagnostics of the products

    No full text
    Abstract. The MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument on the Envisat (Environmental satellite) satellite has provided vertical profiles of the atmospheric composition on a global scale for almost ten years. The MIPAS mission is divided in two phases: the full resolution phase, from 2002 to 2004, and the optimized resolution phase, from 2005 to 2012, which is characterized by a finer vertical and horizontal sampling attained through a reduction of the spectral resolution. While the description and characterization of the products of the ESA processor for the full resolution phase has been already described in previous papers, in this paper we focus on the performances of the latest version of the ESA (European Space Agency) processor, named ML2PP V6 (MI-PAS Level 2 Prototype Processor), which has been used for reprocessing the entire mission. The ESA processor had to perform the operational near real time analysis of the observations and its products needed to be available for data assimilation. Therefore, it has been designed for fast, continuous and automated analysis of observations made in quite different atmospheric conditions and for a minimum use of external constraints in order to avoid biases in the products. The dense vertical sampling of the measurements adopted in the second phase of the MIPAS mission resulted in sampling intervals finer than the instantaneous field of view of the instrument. Together with the choice of a retrieval grid aligned with the vertical sampling of the measurements, this made ill-conditioned the retrieval problem of the MI-PAS operational processor. This problem has been handled with minimal changes to the original retrieval approach but with significant improvements nonetheless. The LevenbergMarquardt method, already present in the retrieval scheme for its capability to provide fast convergence for nonlinear problems, is now also exploited for the reduction of the ill-conditioning of the inversion. An expression specifically designed for the regularizing Levenberg-Marquardt method has been implemented for the computation of the covariance matrices and averaging kernels of the retrieved products. The regularization of the Levenberg-Marquardt method is controlled by the convergence criteria and is deliberately kept weak. The resulting oscillations of the retrieved profile are a posteriori damped by an innovative selfadapting Tikhonov regularization. The convergence criteria and the weakness of the self-adapting regularization ensure Published by Copernicus Publications on behalf of the European Geosciences Union. P. Raspollini et al.: Ten years of MIPAS that minimum constraints are used and the best vertical resolution obtainable from the measurements is achieved in all atmospheric conditions. Random and systematic errors, as well as vertical and horizontal resolution are compared in the two phases of the mission for all products, namely: temperature, H 2 O, O 3 , HNO 3 , CH 4 , N 2 O, NO 2 , CFC-11, CFC-12, N 2 O 5 and ClONO 2 . The use in the two phases of the mission of different optimized sets of spectral intervals ensures that, despite the different spectral resolutions, comparable performances are obtained in the whole MIPAS mission in terms of random and systematic errors, while the vertical resolution and the horizontal resolution are significantly better in the case of the optimized resolution measurements

    Ten years of MIPAS measurements with ESA Level 2 processor V6-Part 1: Retrieval algorithm and diagnostics of the products

    Get PDF
    The MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument on the Envisat (Environmental satellite) satellite has provided vertical profiles of the atmospheric composition on a global scale for almost ten years. The MIPAS mission is divided in two phases: the full resolution phase, from 2002 to 2004, and the optimized resolution phase, from 2005 to 2012, which is characterized by a finer vertical and horizontal sampling attained through a reduction of the spectral resolution. While the description and characterization of the products of the ESA processor for the full resolution phase has been already described in previous papers, in this paper we focus on the performances of the latest version of the ESA (European Space Agency) processor, named ML2PP V6 (MIPAS Level 2 Prototype Processor), which has been used for reprocessing the entire mission. The ESA processor had to perform the operational near real time analysis of the observations and its products needed to be available for data assimilation. Therefore, it has been designed for fast, continuous and automated analysis of observations made in quite different atmospheric conditions and for a minimum use of external constraints in order to avoid biases in the products. The dense vertical sampling of the measurements adopted in the second phase of the MIPAS mission resulted in sampling intervals finer than the instantaneous field of view of the instrument. Together with the choice of a retrieval grid aligned with the vertical sampling of the measurements, this made ill-conditioned the retrieval problem of the MIPAS operational processor. This problem has been handled with minimal changes to the original retrieval approach but with significant improvements nonetheless. The Levenberg-Marquardt method, already present in the retrieval scheme for its capability to provide fast convergence for nonlinear problems, is now also exploited for the reduction of the ill-conditioning of the inversion. An expression specifically designed for the regularizing Levenberg-Marquardt method has been implemented for the computation of the covariance matrices and averaging kernels of the retrieved products. The regularization of the Levenberg-Marquardt method is controlled by the convergence criteria and is deliberately kept weak. The resulting oscillations of the retrieved profile are a posteriori damped by an innovative self-adapting Tikhonov regularization. The convergence criteria and the weakness of the self-adapting regularization ensure that minimum constraints are used and the best vertical resolution obtainable from the measurements is achieved in all atmospheric conditions. Random and systematic errors, as well as vertical and horizontal resolution are compared in the two phases of the mission for all products, namely: temperature, H2O, O3, HNO3, CH4, N2O, NO2, CFC-11, CFC-12, N2O5 and ClONO2. The use in the two phases of the mission of different optimized sets of spectral intervals ensures that, despite the different spectral resolutions, comparable performances are obtained in the whole MIPAS mission in terms of random and systematic errors, while the vertical resolution and the horizontal resolution are significantly better in the case of the optimized resolution measurements. © Author(s) 2013

    The global picture of the atmospheric composition provided by MIPAS ENVISAT

    No full text
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a mid-infrared emission spectrometer which is part of the core payload of the Envisat satellite, launched by ESA in March 2002. It provides unique observations of the atmospheric spectral radiances in the 4.15 - 14.6 μm spectral interval with innovative limb scanning capabilities for the three dimensional observation of the atmospheric composition and processes. The species, the processes and events that have been studied with this instrument in its 10 years of operation are briefly reviewed. © 2012 IEEE
    corecore