121 research outputs found

    Nonlinear Fitness Landscape of a Molecular Pathway

    Get PDF
    Genes are regulated because their expression involves a fitness cost to the organism. The production of proteins by transcription and translation is a well-known cost factor, but the enzymatic activity of the proteins produced can also reduce fitness, depending on the internal state and the environment of the cell. Here, we map the fitness costs of a key metabolic network, the lactose utilization pathway in Escherichia coli. We measure the growth of several regulatory lac operon mutants in different environments inducing expression of the lac genes. We find a strikingly nonlinear fitness landscape, which depends on the production rate and on the activity rate of the lac proteins. A simple fitness model of the lac pathway, based on elementary biophysical processes, predicts the growth rate of all observed strains. The nonlinearity of fitness is explained by a feedback loop: production and activity of the lac proteins reduce growth, but growth also affects the density of these molecules. This nonlinearity has important consequences for molecular function and evolution. It generates a cliff in the fitness landscape, beyond which populations cannot maintain growth. In viable populations, there is an expression barrier of the lac genes, which cannot be exceeded in any stationary growth process. Furthermore, the nonlinearity determines how the fitness of operon mutants depends on the inducer environment. We argue that fitness nonlinearities, expression barriers, and gene–environment interactions are generic features of fitness landscapes for metabolic pathways, and we discuss their implications for the evolution of regulation

    Altered sense of Agency in children with spastic cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children diagnosed with spastic Cerebral Palsy (CP) often show perceptual and cognitive problems, which may contribute to their functional deficit. Here we investigated if altered ability to determine whether an observed movement is performed by themselves (sense of agency) contributes to the motor deficit in children with CP.</p> <p>Methods</p> <p>Three groups; <sub>1) </sub>CP children, <sub>2) </sub>healthy peers, and <sub>3) </sub>healthy adults produced straight drawing movements on a pen-tablet which was not visible for the subjects. The produced movement was presented as a virtual moving object on a computer screen. Subjects had to evaluate after each trial whether the movement of the object on the computer screen was generated by themselves or by a computer program which randomly manipulated the visual feedback by angling the trajectories 0, 5, 10, 15, 20 degrees away from target.</p> <p>Results</p> <p>Healthy adults executed the movements in 310 seconds, whereas healthy children and especially CP children were significantly slower (p < 0.002) (on average 456 seconds and 543 seconds respectively). There was also a statistical difference between the healthy and age matched CP children (p = 0.037). When the trajectory of the object generated by the computer corresponded to the subject's own movements all three groups reported that they were responsible for the movement of the object. When the trajectory of the object deviated by more than 10 degrees from target, healthy adults and children more frequently than CP children reported that the computer was responsible for the movement of the object. CP children consequently also attempted to compensate more frequently from the perturbation generated by the computer.</p> <p>Conclusions</p> <p>We conclude that CP children have a reduced ability to determine whether movement of a virtual moving object is caused by themselves or an external source. We suggest that this may be related to a poor integration of their intention of movement with visual and proprioceptive information about the performed movement and that altered sense of agency may be an important functional problem in children with CP.</p

    Affine differential geometry analysis of human arm movements

    Get PDF
    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the “two-thirds power law” which connects path curvature with velocity, and “local isochrony” which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan’s moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants—equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations for the role that the equi-affine metric may play in internal representations of motion perception and production

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research

    Ischaemic conditioning and reperfusion injury

    Get PDF
    The 30-year anniversary of the discovery of 'ischaemic preconditioning' is in 2016. This endogenous phenomenon can paradoxically protect the heart from acute myocardial infarction by subjecting it to one or more brief cycles of ischaemia and reperfusion. Apart from complete reperfusion, this method is the most powerful intervention known for reducing infarct size. The concept of ischaemic preconditioning has evolved into 'ischaemic conditioning', a term that encompasses a number of related endogenous cardioprotective strategies, applied either directly to the heart (ischaemic preconditioning or postconditioning) or from afar, for example a limb (remote ischaemic preconditioning, perconditioning, or postconditioning). Investigations of signalling pathways underlying ischaemic conditioning have identified a number of therapeutic targets for pharmacological manipulation. Over the past 3 decades, a number of ischaemic and pharmacological cardioprotection strategies, discovered in experimental studies, have been examined in the clinical setting of acute myocardial infarction and CABG surgery. The results from many of the studies have been disappointing, and no effective cardioprotective therapy is currently used in clinical practice. Several large, multicentre, randomized, controlled clinical trials on cardioprotection have highlighted the challenges of translating ischaemic conditioning and pharmacological cardioprotection strategies into patient benefit. However, a number of cardioprotective therapies have shown promising results in reducing infarct size and improving clinical outcomes in patients with ischaemic heart disease
    corecore