5,501 research outputs found
Charge ordering of magnetic monopoles in triangular spin ice patterns
Artificial spin ice offers the possibility to investigate a variety of
dipolar orderings, spin frustrations and ground states. However, the most
fascinating aspect is the realization that magnetic charge order can be
established without spin order. We have investigated magnetic dipoles arranged
on a honeycomb lattice as a function of applied field, using magnetic force
microscopy. For the easy direction with the field parallel to one of the three
dipole sublattices we observe at coercivity a maximum of spin frustration and
simultaneously a maximum of charge order of magnetic monopoles with alternating
charges 3.Comment: 7 pages, 4 figure
Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft x-ray scattering
We report the direct observation of slow fluctuations of helical
antiferromagnetic domains in an ultra-thin holmium film using coherent resonant
magnetic x-ray scattering. We observe a gradual increase of the fluctuations in
the speckle pattern with increasing temperature, while at the same time a
static contribution to the speckle pattern remains. This finding indicates that
domain-wall fluctuations occur over a large range of time scales. We ascribe
this non-ergodic behavior to the strong dependence of the fluctuation rate on
the local thickness of the film.Comment: to appear in Phys. Rev. Let
Proximity effect of vanadium on spin-density-wave magnetism in Cr films
The spin-density wave (SDW) state in thin chromium films is well known to be
strongly affected by proximity effects from neighboring layers. To date the
main attention has been given to effects arising from exchange interactions at
interfaces. In the present work we report on combined neutron and synchrotron
scattering studies of proximity effects in Cr/V films where the boundary
condition is due to the hybridization of Cr with paramagnetic V at the
interface. We find that the V/Cr interface has a strong and long-range effect
on the polarization, period, and the N\'{e}el temperature of the SDW in rather
thick Cr films. This unusually strong effect is unexpected and not predicted by
theory.Comment: 7 figure
Extended Source Diffraction Effects Near Gravitational Lens Fold Caustics
Calculations are presented detailing the gravitational lens diffraction due
to the steep brightness gradient of the limb of a stellar source. The lensing
case studied is the fold caustic crossing. The limb diffraction signal greatly
exceeds that due to the disk as a whole and should be detectable for white
dwarf sources in our Galaxy and it's satellites with existing telescopes.
Detection of this diffraction signal would provide an additional mathematical
constraint, reducing the degeneracy among models of the lensing geometry. The
diffraction pattern provides pico-arcsecond resolution of the limb profile.Comment: 19 pages including 17 figures, Accepted for publication in ApJ, Minor
conceptual change from previous versio
Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences
Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.
Accurate strain measurements in highly strained Ge microbridges
Ge under high strain is predicted to become a direct bandgap semiconductor.
Very large deformations can be introduced using microbridge devices. However,
at the microscale, strain values are commonly deduced from Raman spectroscopy
using empirical linear models only established up to 1.2% for uniaxial stress.
In this work, we calibrate the Raman-strain relation at higher strain using
synchrotron based microdiffraction. The Ge microbridges show unprecedented high
tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift.
We demonstrate experimentally and theoretically that the Raman strain relation
is not linear and we provide a more accurate expression.Comment: 10 pages, 4 figure
Reliability analysis of a timber truss system subjected to decay
Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty exhibited by new structures. In order to overcome these limitations, and also to include the e ects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed using a simple structural model, similar to that used for current semi-probabilistic analysis.Fundação para a Ciência e a Tecnologia (FCT
Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms' tumor
We have analyzed several cases of Beckwith-Wiedemann syndrome (BWS) with Wilms' tumor in a familial setting, which give insight into the complex controls of imprinting and gene expression in the chromosome 11p15 region. We describe a 2.2-kbp microdeletion in the H19/insulin-like growth factor 2 (IGF2)-imprinting center eliminating three target sites of the chromatin insulator protein CTCF that we believe here is necessary, but not sufficient, to cause BWS and Wilms' tumor. Maternal inheritance of the deletion is associated with IGF2 loss of imprinting and up-regulation of IGF2 mRNA. However, in at least one affected family member a second genetic lesion (a duplication of maternal 11p15) was identified and accompanied by a further increase in IGF2 rnRNA levels 35-fold higher than control values. Our results suggest that the combined effects of the H19//GF2-imprinting center microdeletion and 11p15 chromosome duplication were necessary for manifestation of BWS
Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal
We have shown that polarized neutron reflectometry can determine in a
model-free way not only the mean magnetization of a ferromagnetic thin film at
any point of a hysteresis cycle, but also the mean square dispersion of the
magnetization vectors of its lateral domains. This technique is applied to
elucidate the mechanism of the magnetization reversal of an exchange-biased
Co/CoO bilayer. The reversal process above the blocking temperature is governed
by uniaxial domain switching, while below the blocking temperature the reversal
of magnetization for the trained sample takes place with substantial domain
rotation
Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84
The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed
- …
