273 research outputs found

    Solar System Experiments and the Interpretation of Saa's Model of Gravity with Propagating Torsion as a Theory with Variable Plank "Constant"

    Full text link
    It is shown that the recently proposed interpretation of the transposed equi-affine theory of gravity as a theory with variable Plank "constant" is inconsistent with basic solar system gravitational experiments.Comment: 6 pages, latex, no figures. Typos correcte

    MERLIN observations of Stephan's Quintet

    Full text link
    We present MERLIN L-band images of the compact galaxy group, Stephan's Quintet. The Seyfert 2 galaxy, NGC 7319, the brightest member of the compact group, is seen to have a triple radio structure typical of many extra-galactic radio sources which have a flat spectrum core and two steep spectrum lobes with hot spots. The two lobes are asymmetrically distributed on opposite sides of the core along the minor axis of the galaxy. Ultraviolet emission revealed in a high resolution HRC/ACS HST image is strongly aligned with the radio plasma and we interpret the intense star formation in the core and north lobe as an event induced by the collision of the north radio jet with over-dense ambient material. In addition, a re-mapping of archive VLA L-band observations reveals more extended emission along the major axis of the galaxy which is aligned with the optical axis. Images formed from the combined MERLIN and archive VLA data reveal more detailed structure of the two lobes and hot spots.Comment: Completely revised version with new HST data included, to appear in MNRA

    Global monopoles and scalar fields as the electrogravity dual of Schwarzschild spacetime

    Get PDF
    We prove that both global monopole and minimally coupled static zero mass scalar field are electrogravity dual of the Schwarzschild solution or flat space and they share the same equation of state, T00Tii=0T^0_0 - T^i_i = 0. This property was however known for the global monopole spacetime while it is for the first time being established for the scalar field. In particular, it turns out that the Xanthopoulos - Zannias scalar field solution is dual to flat space.Comment: 5 pages, RevTe

    Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Full text link
    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (RISCOR_{ISCO}), the rotation frequency Ωdϕdt\Omega\equiv\frac{d\phi}{dt} and the epicyclic frequencies Ωρ,  Ωz\Omega_{\rho},\;\Omega_z. Finally we present some results of the comparison.Comment: Contribution at the 13th Conference on Recent Developments in Gravity (NEB XIII), corrected typo in M4M_4 of eq. 5 of the published versio

    Conformal Black Hole Solutions of Axi-Dilaton Gravity in D-dimensions

    Get PDF
    Static, spherically symmetric solutions of axi-dilaton gravity in DD dimensions is given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant ω\omega and an axion-dilaton coupling parameter kk. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one parameter family of black hole solutions in the scale invariant limit.Comment: 6 PAGES, Rev-tex file, no figures, to appear in Phys-Rev

    Conformally dressed black hole in 2+1 dimensions

    Get PDF
    A three dimensional black hole solution of Einstein equations with negative cosmological constant coupled to a conformal scalar field is given. The solution is static, circularly symmetric, asymptotically anti-de Sitter and nonperturbative in the conformal field. The curvature tensor is singular at the origin while the scalar field is regular everywhere. The condition that the Euclidean geometry be regular at the horizon fixes the temperature to be T=9r+16πl2T=\frac{9\, r_+}{16\pi l^2}. Using the Hamiltonian formulation including boundary terms of the Euclidean action, the entropy is found to be 23\frac{2}{3} of the standard value (14A\frac{1}{4} A), and in agreement with the first law of thermodynamics.Comment: LaTeX ,RevTeX, 13pages, no figure

    Collisions of Einstein-Conformal Scalar Waves

    Full text link
    A large class of solutions of the Einstein-conformal scalar equations in D=2+1 and D=3+1 is identified. They describe the collisions of asymptotic conformal scalar waves and are generated from Einstein-minimally coupled scalar spacetimes via a (generalized) Bekenstein transformation. Particular emphasis is given to the study of the global properties and the singularity structure of the obtained solutions. It is shown, that in the case of the absence of pure gravitational radiation in the initial data, the formation of the final singularity is not only generic, but is even inevitable.Comment: 17 pages, LaTe

    Stellarator microinstabilities and turbulence at low magnetic shear

    Full text link
    [EN] Gyrokinetic simulations of drift waves in low-magnetic-shear stellarators reveal that simulation domains comprised of multiple turns can be required to properly resolve critical mode structures important in saturation dynamics. Marginally stable eigenmodes important in saturation of ion temperature gradient modes and trapped electron modes in the Helically Symmetric Experiment (HSX) stellarator are observed to have two scales, with the envelope scale determined by the properties of the local magnetic shear and an inner scale determined by the interplay between the local shear and magnetic field-line curvature. Properly resolving these modes removes spurious growth rates that arise for extended modes in zero-magnetic-shear approximations, enabling use of a zero-magnetic-shear technique with smaller simulation domains and attendant cost savings. Analysis of subdominant modes in trapped electron mode (TEM)-driven turbulence reveals that the extended marginally stable modes play an important role in the nonlinear dynamics, and suggests that the properties induced by low magnetic shear may be exploited to provide another route for turbulence saturation.The authors would like to thank F. Jenko for insightful questions that motivated this research and J. Smoniewski and J. H. E. Proll for engaging discussions. This work was supported by US DoE grant nos. DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291. J.E.R. was supported by Agencia Estatal de Investigacion (AEI) under grant TIN2016-75985-P, which includes European Commission ERDF funds. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231. This research was performed using the compute resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences. The CHTC is supported by UW-Madison, the Advanced Computing Initiative, the Wisconsin Alumni Research Foundation, the Wisconsin Institutes for Discovery and the National Science Foundation, and is an active member of the Open Science Grid, which is supported by the National Science Foundation and the US Department of Energy's Office of Science.Faber, BJ.; Pueschel, MJ.; Terry, PW.; Hegna, CC.; Roman, JE. (2018). Stellarator microinstabilities and turbulence at low magnetic shear. Journal of Plasma Physics. 84(5). https://doi.org/10.1017/S0022377818001022S845Connor, J. W., & Hastie, R. J. (2004). Microstability in tokamaks with low magnetic shear. Plasma Physics and Controlled Fusion, 46(10), 1501-1535. doi:10.1088/0741-3335/46/10/001Terry, P. W., Faber, B. J., Hegna, C. C., Mirnov, V. V., Pueschel, M. J., & Whelan, G. G. (2018). Saturation scalings of toroidal ion temperature gradient turbulence. Physics of Plasmas, 25(1), 012308. doi:10.1063/1.5007062Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Friedman, B., Carter, T. A., Umansky, M. V., Schaffner, D., & Joseph, I. (2013). Nonlinear instability in simulations of Large Plasma Device turbulence. Physics of Plasmas, 20(5), 055704. doi:10.1063/1.4805084Eiermann, M., & Ernst, O. G. (2006). A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions. SIAM Journal on Numerical Analysis, 44(6), 2481-2504. doi:10.1137/050633846Connor, J. W., Hastie, R. J., & Taylor, J. B. (1978). Shear, Periodicity, and Plasma Ballooning Modes. Physical Review Letters, 40(6), 396-399. doi:10.1103/physrevlett.40.396Xanthopoulos, P., & Jenko, F. (2007). Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X. Physics of Plasmas, 14(4), 042501. doi:10.1063/1.2714328Hegna, C. C., & Hudson, S. R. (2001). Loss of Second-Ballooning Stability in Three-Dimensional Equilibria. Physical Review Letters, 87(3). doi:10.1103/physrevlett.87.035001Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., Pueschel, M. J., Nevins, W. M., & Wang, E. (2011). Role of subdominant stable modes in plasma microturbulence. Physics of Plasmas, 18(5), 055706. doi:10.1063/1.3563536Faber, B. J., Pueschel, M. J., Proll, J. H. E., Xanthopoulos, P., Terry, P. W., Hegna, C. C., … Talmadge, J. N. (2015). Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator. Physics of Plasmas, 22(7), 072305. doi:10.1063/1.4926510Sugama, H., & Watanabe, T.-H. (2006). Collisionless damping of zonal flows in helical systems. Physics of Plasmas, 13(1), 012501. doi:10.1063/1.2149311Hegna, C. C., Terry, P. W., & Faber, B. J. (2018). Theory of ITG turbulent saturation in stellarators: Identifying mechanisms to reduce turbulent transport. Physics of Plasmas, 25(2), 022511. doi:10.1063/1.5018198Zocco, A., Xanthopoulos, P., Doerk, H., Connor, J. W., & Helander, P. (2018). Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas. Journal of Plasma Physics, 84(1). doi:10.1017/s0022377817000988Merz, F. 2008 Gyrokinetic simulation of multimode plasma turbulence. PhD thesis.Dorland, W., Jenko, F., Kotschenreuther, M., & Rogers, B. N. (2000). Electron Temperature Gradient Turbulence. Physical Review Letters, 85(26), 5579-5582. doi:10.1103/physrevlett.85.5579Xanthopoulos, P., Cooper, W. A., Jenko, F., Turkin, Y., Runov, A., & Geiger, J. (2009). A geometry interface for gyrokinetic microturbulence investigations in toroidal configurations. Physics of Plasmas, 16(8), 082303. doi:10.1063/1.3187907Dinklage, A., Beidler, C. D., Helander, P., Fuchert, G., Maaßberg, H., … Zhang, D. (2018). Magnetic configuration effects on the Wendelstein 7-X stellarator. Nature Physics, 14(8), 855-860. doi:10.1038/s41567-018-0141-9Hatch, D. R., Kotschenreuther, M., Mahajan, S., Valanju, P., Jenko, F., Told, D., … Saarelma, S. (2016). Microtearing turbulence limiting the JET-ILW pedestal. Nuclear Fusion, 56(10), 104003. doi:10.1088/0029-5515/56/10/104003Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., & Nevins, W. M. (2011). Saturation of Gyrokinetic Turbulence through Damped Eigenmodes. Physical Review Letters, 106(11). doi:10.1103/physrevlett.106.115003Proll, J. H. E., Xanthopoulos, P., & Helander, P. (2013). Collisionless microinstabilities in stellarators. II. Numerical simulations. Physics of Plasmas, 20(12), 122506. doi:10.1063/1.4846835Whelan, G. G., Pueschel, M. J., & Terry, P. W. (2018). Nonlinear Electromagnetic Stabilization of Plasma Microturbulence. Physical Review Letters, 120(17). doi:10.1103/physrevlett.120.175002Friedman, B., & Carter, T. A. (2014). Linear Technique to Understand Non-Normal Turbulence Applied to a Magnetized Plasma. Physical Review Letters, 113(2). doi:10.1103/physrevlett.113.025003High mode number stability of an axisymmetric toroidal plasma. (1979). Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 365(1720), 1-17. doi:10.1098/rspa.1979.0001Boozer, A. H. (1998). What is a stellarator? Physics of Plasmas, 5(5), 1647-1655. doi:10.1063/1.872833Boozer, A. H. (1981). Plasma equilibrium with rational magnetic surfaces. Physics of Fluids, 24(11), 1999. doi:10.1063/1.863297Dewar, R. L. (1983). Ballooning mode spectrum in general toroidal systems. Physics of Fluids, 26(10), 3038. doi:10.1063/1.864028Anderson, F. S. B., Almagri, A. F., Anderson, D. T., Matthews, P. G., Talmadge, J. N., & Shohet, J. L. (1995). The Helically Symmetric Experiment, (HSX) Goals, Design and Status. Fusion Technology, 27(3T), 273-277. doi:10.13182/fst95-a11947086Bhattacharjee, A. (1983). Drift waves in a straight stellarator. Physics of Fluids, 26(4), 880. doi:10.1063/1.864229Baumgaertel, J. A., Belli, E. A., Dorland, W., Guttenfelder, W., Hammett, G. W., Mikkelsen, D. R., … Xanthopoulos, P. (2011). Simulating gyrokinetic microinstabilities in stellarator geometry with GS2. Physics of Plasmas, 18(12), 122301. doi:10.1063/1.3662064Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., … Whaley, R. C. (1997). ScaLAPACK Users’ Guide. doi:10.1137/1.9780898719642Martin, M. F., Landreman, M., Xanthopoulos, P., Mandell, N. R., & Dorland, W. (2018). The parallel boundary condition for turbulence simulations in low magnetic shear devices. Plasma Physics and Controlled Fusion, 60(9), 095008. doi:10.1088/1361-6587/aad38aPlunk, G. G., Xanthopoulos, P., & Helander, P. (2017). Distinct Turbulence Saturation Regimes in Stellarators. Physical Review Letters, 118(10). doi:10.1103/physrevlett.118.105002Candy, J., Waltz, R. E., & Rosenbluth, M. N. (2004). Smoothness of turbulent transport across a minimum-q surface. Physics of Plasmas, 11(5), 1879-1890. doi:10.1063/1.1689967Nagaoka, K., Takahashi, H., Murakami, S., Nakano, H., Takeiri, Y., Tsuchiya, H., … Komori, A. (2015). Integrated discharge scenario for high-temperature helical plasma in LHD. Nuclear Fusion, 55(11), 113020. doi:10.1088/0029-5515/55/11/113020Canik, J. M., Anderson, D. T., Anderson, F. S. B., Likin, K. M., Talmadge, J. N., & Zhai, K. (2007). Experimental Demonstration of Improved Neoclassical Transport with Quasihelical Symmetry. Physical Review Letters, 98(8). doi:10.1103/physrevlett.98.085002Dimits, A. M., Williams, T. J., Byers, J. A., & Cohen, B. I. (1996). Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. Physical Review Letters, 77(1), 71-74. doi:10.1103/physrevlett.77.71Beer, M. A., Cowley, S. C., & Hammett, G. W. (1995). Field‐aligned coordinates for nonlinear simulations of tokamak turbulence. Physics of Plasmas, 2(7), 2687-2700. doi:10.1063/1.871232Gates, D. A., Anderson, D., Anderson, S., Zarnstorff, M., Spong, D. A., Weitzner, H., … Glasser, A. H. (2018). Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee. Journal of Fusion Energy, 37(1), 51-94. doi:10.1007/s10894-018-0152-7Helander, P. (2014). Theory of plasma confinement in non-axisymmetric magnetic fields. Reports on Progress in Physics, 77(8), 087001. doi:10.1088/0034-4885/77/8/087001Peeters, A. G., Camenen, Y., Casson, F. J., Hornsby, W. A., Snodin, A. P., Strintzi, D., & Szepesi, G. (2009). The nonlinear gyro-kinetic flux tube code GKW. Computer Physics Communications, 180(12), 2650-2672. doi:10.1016/j.cpc.2009.07.001Jenko, F., Dorland, W., Kotschenreuther, M., & Rogers, B. N. (2000). Electron temperature gradient driven turbulence. Physics of Plasmas, 7(5), 1904-1910. doi:10.1063/1.874014Fulton, D. P., Lin, Z., Holod, I., & Xiao, Y. (2014). Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities. Physics of Plasmas, 21(4), 042110. doi:10.1063/1.4871387Bañón Navarro, A., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T., & Jenko, F. (2011). Free energy balance in gyrokinetic turbulence. Physics of Plasmas, 18(9), 092303. doi:10.1063/1.3632077Xanthopoulos, P., Merz, F., Görler, T., & Jenko, F. (2007). Nonlinear Gyrokinetic Simulations of Ion-Temperature-Gradient Turbulence for the Optimized Wendelstein 7-X Stellarator. Physical Review Letters, 99(3). doi:10.1103/physrevlett.99.035002Goldhirsch, L., Orszag, S. A., & Maulik, B. K. (1987). An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices. Journal of Scientific Computing, 2(1), 33-58. doi:10.1007/bf01061511Plunk, G. G., Helander, P., Xanthopoulos, P., & Connor, J. W. (2014). Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode. Physics of Plasmas, 21(3), 032112. doi:10.1063/1.4868412Nadeem, M., Rafiq, T., & Persson, M. (2001). Local magnetic shear and drift waves in stellarators. Physics of Plasmas, 8(10), 4375-4385. doi:10.1063/1.1396842Candy, J., & Waltz, R. E. (2003). An Eulerian gyrokinetic-Maxwell solver. Journal of Computational Physics, 186(2), 545-581. doi:10.1016/s0021-9991(03)00079-2Al-Mohy, A. H., & Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3), 970-989. doi:10.1137/09074721xTerry, P. W., Baver, D. A., & Gupta, S. (2006). Role of stable eigenmodes in saturated local plasma turbulence. Physics of Plasmas, 13(2), 022307. doi:10.1063/1.2168453Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778Cuthbert, P., & Dewar, R. L. (2000). Anderson-localized ballooning modes in general toroidal plasmas. Physics of Plasmas, 7(6), 2302-2305. doi:10.1063/1.874064Waltz, R. E., & Boozer, A. H. (1993). Local shear in general magnetic stellarator geometry. Physics of Fluids B: Plasma Physics, 5(7), 2201-2205. doi:10.1063/1.860754Pueschel, M. J., Faber, B. J., Citrin, J., Hegna, C. C., Terry, P. W., & Hatch, D. R. (2016). Stellarator Turbulence: Subdominant Eigenmodes and Quasilinear Modeling. Physical Review Letters, 116(8). doi:10.1103/physrevlett.116.085001Pearlstein, L. D., & Berk, H. L. (1969). Universal Eigenmode in a Strongly Sheared Magnetic Field. Physical Review Letters, 23(5), 220-222. doi:10.1103/physrevlett.23.220Meerbergen, K., & Sadkane, M. (1999). Using Krylov approximations to the matrix exponential operator in Davidson’s method. Applied Numerical Mathematics, 31(3), 331-351. doi:10.1016/s0168-9274(98)00134-2Chen, Y., Parker, S. E., Wan, W., & Bravenec, R. (2013). Benchmarking gyrokinetic simulations in a toroidal flux-tube. Physics of Plasmas, 20(9), 092511. doi:10.1063/1.482198
    corecore