356 research outputs found

    Solar System Experiments and the Interpretation of Saa's Model of Gravity with Propagating Torsion as a Theory with Variable Plank "Constant"

    Full text link
    It is shown that the recently proposed interpretation of the transposed equi-affine theory of gravity as a theory with variable Plank "constant" is inconsistent with basic solar system gravitational experiments.Comment: 6 pages, latex, no figures. Typos correcte

    MERLIN observations of Stephan's Quintet

    Full text link
    We present MERLIN L-band images of the compact galaxy group, Stephan's Quintet. The Seyfert 2 galaxy, NGC 7319, the brightest member of the compact group, is seen to have a triple radio structure typical of many extra-galactic radio sources which have a flat spectrum core and two steep spectrum lobes with hot spots. The two lobes are asymmetrically distributed on opposite sides of the core along the minor axis of the galaxy. Ultraviolet emission revealed in a high resolution HRC/ACS HST image is strongly aligned with the radio plasma and we interpret the intense star formation in the core and north lobe as an event induced by the collision of the north radio jet with over-dense ambient material. In addition, a re-mapping of archive VLA L-band observations reveals more extended emission along the major axis of the galaxy which is aligned with the optical axis. Images formed from the combined MERLIN and archive VLA data reveal more detailed structure of the two lobes and hot spots.Comment: Completely revised version with new HST data included, to appear in MNRA

    Global monopoles and scalar fields as the electrogravity dual of Schwarzschild spacetime

    Get PDF
    We prove that both global monopole and minimally coupled static zero mass scalar field are electrogravity dual of the Schwarzschild solution or flat space and they share the same equation of state, T00Tii=0T^0_0 - T^i_i = 0. This property was however known for the global monopole spacetime while it is for the first time being established for the scalar field. In particular, it turns out that the Xanthopoulos - Zannias scalar field solution is dual to flat space.Comment: 5 pages, RevTe

    Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Full text link
    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (RISCOR_{ISCO}), the rotation frequency Ωdϕdt\Omega\equiv\frac{d\phi}{dt} and the epicyclic frequencies Ωρ,  Ωz\Omega_{\rho},\;\Omega_z. Finally we present some results of the comparison.Comment: Contribution at the 13th Conference on Recent Developments in Gravity (NEB XIII), corrected typo in M4M_4 of eq. 5 of the published versio

    Conformal Black Hole Solutions of Axi-Dilaton Gravity in D-dimensions

    Get PDF
    Static, spherically symmetric solutions of axi-dilaton gravity in DD dimensions is given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant ω\omega and an axion-dilaton coupling parameter kk. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one parameter family of black hole solutions in the scale invariant limit.Comment: 6 PAGES, Rev-tex file, no figures, to appear in Phys-Rev

    No Scalar Hair Theorem for a Charged Spherical Black Hole

    Full text link
    This paper consolidates noscalar hair theorem for a charged spherically symmetric black hole in four dimension in general relativity as well as in all scalar tensor theories, both minimally and nonminimally coupled, when the effective Newtonian constant of gravity is positive. However, there is an exception when the matter field itself is coupled to the scalar field, such as in dilaton gravity.Comment: 13 pages, Latex format, some minor corrections are made, accepted for publication in Physical Review

    Phase transition in Schwarzschild-de Sitter spacetime

    Full text link
    Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state(E.O.S) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally couplling this ratio is -1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<1/4\xi<{1/4} >. Therefore we derive a new constraint on the value of our coupling ξ\xi . These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde

    Collisions of Einstein-Conformal Scalar Waves

    Full text link
    A large class of solutions of the Einstein-conformal scalar equations in D=2+1 and D=3+1 is identified. They describe the collisions of asymptotic conformal scalar waves and are generated from Einstein-minimally coupled scalar spacetimes via a (generalized) Bekenstein transformation. Particular emphasis is given to the study of the global properties and the singularity structure of the obtained solutions. It is shown, that in the case of the absence of pure gravitational radiation in the initial data, the formation of the final singularity is not only generic, but is even inevitable.Comment: 17 pages, LaTe

    Conformally dressed black hole in 2+1 dimensions

    Get PDF
    A three dimensional black hole solution of Einstein equations with negative cosmological constant coupled to a conformal scalar field is given. The solution is static, circularly symmetric, asymptotically anti-de Sitter and nonperturbative in the conformal field. The curvature tensor is singular at the origin while the scalar field is regular everywhere. The condition that the Euclidean geometry be regular at the horizon fixes the temperature to be T=9r+16πl2T=\frac{9\, r_+}{16\pi l^2}. Using the Hamiltonian formulation including boundary terms of the Euclidean action, the entropy is found to be 23\frac{2}{3} of the standard value (14A\frac{1}{4} A), and in agreement with the first law of thermodynamics.Comment: LaTeX ,RevTeX, 13pages, no figure
    corecore