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Conformal black hole solutions of axidilaton gravity in D dimensions
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Static, spherically symmetric solutions of axidilaton gravityDindimensions are given in the Brans-Dicke
frame for arbitrary values of the Brans-Dicke constardgnd an axion-dilaton coupling paramekeiThe mass
and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter
family of black hole solutions in the scale-invariant limit.
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[. INTRODUCTION solutions of the Brans-Dicke-Maxwell field equations were
given[12,13.

It is an exciting conjecture that all superstring models In a remarkable paper, Bekenstéi#] found two classes
belong to a hypothetical eleven-dimensional M theory thaof static, spherically symmetric solutions of the Einstein-
would accommodate their apparent dualities. M theory as §onformal scalar field equations, and he argLis] that one
classical theory may be considered in a low-energy limitParticular class describes black-hole solutions with scalar
where only the low-lying massless excitation modes contribhair. His arguments were later repeatedir-4 dimensions
ute to an effective field theory. As such, it would be the same16]. It is essential here_ to note that such a subclass of con-
as simple eleven-dimensional supergravity theory. A subsd®rmal black-hole solutions cannot be reached by the as-
quent Kaluza-Klein reduction would bring it to a ten- sumpuons of R'ef[3].'ln this paper, we consider aX|d!Iaton
dimensional theory related with the type-lIA string model 9@Vity in D dimensions p=D—4) in the Brans-Dicke

whose gravitational sector consists of the space-time metrigﬁjrsfa?nsa%\ges'tosf fﬁ'i’oipmﬁncagaagggﬂg EO,LUSE,Q_S for
tensorg, dilaton scalar¢, and the axion potentialp(+1) M ping p :

form A that would minimally couple tq branes. We call parameter family of conformal black-hole solutions is ob-

. o i - tai foro=(D—-1)/(D-2 k=—(D—-4)/(D-2).
such an effective gravitational field theory an axidilaton ained fore=( ) ) and ( ) )
gravity in D dimensions and consider in the following its
static, spherically symmetric solutions fpe=D — 4. Il. AXIDILATON GRAVITY IN D DIMENSIONS

The study of black-hole solutions of higher-dimensional  The dynamics of the axidilaton gravity will be determined
gravity theories started in 1963 with the generalization ofpy 5 variational principle from the action[e,w,,A]
Schwarzschild and Reissner-Nordstresolutions toD >4 :fﬁ, where the Lagrangian densi@l form is taken in the

dimensions by Tangherlifll]. These solutions were later put Brans-Dicke frame as
in a wider context by Myers and Perf], while Gibbons

and Maedd 3] emphasized the relevance of dilaton scalars ) b ® e
for the interpretation of such solutions. They provided awide ~ £= 5 Rapl* (€70€”) — gmﬂ*dqﬁ— - HOxH.
range of static, spherically symmetric solutions of the (2.1

coupled Einstein-antisymmetric tensor-massless scalar field

equations(see also[4,5]). On the other hand, it is a well Here the basic gravitational field variables are the coframe
known fact that the scalar-tensor Brans-Dicke th¢6iymay  1_forms 2, in terms of which the space-time metrig
be rewritten in terms of a conformally rescaled metric as the— ,,  eag P where 7,,=diag(—+++---). The Hodge*
coupled Einstein-massless scalar field thepfy9]. For a map is defined so that the oriented volume form1
particular value of the Brans-Dicke coupling parameter,_ s0el[...e". The metric compatible torsion-free connec-

— 3 i - . X
namely forw=—3 in four dimensions, the theory becomes (i, 1 formsw? are obtained from the Cartan structure equa-
locally scale invariant and called the Einstein-conformal scas;

lar field theory. We showed in a previous work that the con-tlons
formal rescaling properties of the Brans-Dicke theory can be
conveniently exhibited using the non-Riemannian reformula-
tion involving space-time torsion expressed in terms of the .
gradient of the scalar fielfL0]. Brans-Dicke theory has also @nd the corresponding curvature 2-forms

been generalized t® dimensions[11] and the black-hole

de?+ wl0e’=0 (2.2

t=doi+ 0ilog. (2.3

*Present address: Department of Physics, Lancaster Universityp is the dilaton O-form andH is a (p+ 2)-form field that is

Lancaster, United Kingdom. derived from the p+1)-form axion potentialA such that
"Present address: Department of Physics, Koc University, IstanHl =dA.  andk are real parameters.
bul, Turkey. The field equations obtained from this action are
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_¢ RPC* (e,0e,leg) =

2 2 L 81+ ¢ 7M1+ D(1xdg),

¢

(2.4

~ o
kd*d¢=§¢kHD*H, (2.5
d(¢**H)=0, dH=0, (2.6)

where the dilaton and axion stress-enerfy-1) forms are
given by

Tl #1= 3 (1ad P dp+dplia*dgp), (2.7

T [H]=3[t,HO*H+ (—)P THO,*H],
(2.9

respectively. We setr=k+{[2p—(n—3)]/(n—1)} andk
=w+[n/(n—=1)].

The same action may be rewritten in terms of thg (
—p—2)-form field

G=¢*«H (2.9

that is dual to the axionp+2)-form field H. We have, in
terms of G,

—k
55090 dd+ ——GI¥G.

(2.10

Hence given any solutiofg,¢,H} of the field equations
derived from Eq.(2.1), we may write down a dual solution
{9,¢,G} to the field equations derived from E@.10. This
notion of duality generalizes the usual electric-magnetic du
ality in D=4 source-free electromagnetism.

L= —

> RabD*(eaDeb)—

2¢
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—f2(r)dtedt+h2(r)dredr+R3(rdQ,_, (3.1

for the metric tensor@=n+1), ¢=¢(r) for the dilaton
0-form, andH =g(r)e'0e?0e® --0e" ! for the axion field
(D—2) form. We see®=f(r)dt ande"=h(r)dr. Then the
Einstein field equations reduce to the following set of ordi-
nary coupled differential equatioria prime denotes a partial
derivative with respect to):

at 'J

(n—2)(n—1)h R’)Z
2R? _(F
12 2
(¢ gzh+(¢ +(n—1)—
)+ R W)
R/ 2
(5]

¢kngh (¢/f)/
lh
R’

2
2
o
f/¢/
h2

(n-1)

¢k ’
3
(n=2)f'R’ f’
hR | h
(n=3)(n—=2)fh
B 2R?

hR (3.2

" 2¢

(n—2)f (R’

{

2oh ?

'f
2,

i
g?f ¢~
2

+(n—-1) Rd),

(3.3

(n=1)(n=2)f
2R?

‘(”‘“ﬁ}

wfd)'z
© 2¢h?

(3.9

while the dilaton field equation becomes

Finally, we wish to point out that the passage to the Ein-
stein frame is achieved by the following conformal rescaling
of the field variables:

~g:¢2/(n—1)g, a,:T(llzlnd), H=H. 2.11)

The resulting Lagrangian densify form will be

L= 1Ry, % (8R°) — $dplixdp— 3 exp<—¢) HO*H.
kY2

R(r)zr{l—
(2.12
Given the above information, it is not difficult to compare f(r)= 1_(
solutions obtained in the Brans-Dicke frame with those given I
in the Einstein frame. -
h(r)= 1—(
Ill. STATIC, SPHERICALLY SYMMETRIC SOLUTIONS L
We will be giving below the most general static, spheri- i
cally symmetricp=(D —4) brane solution to the field equa- b= 1_(
tions (2.4)—(2.6). This family of solutions generalizes the I
usual magnetically charged Reissner-Nordstrblack-hole
solution inD =4 to higher dimensions in a natural way. To (r)= Q
this end, we start with the ansatz 9 Rh-1
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i

and the axion field equation reads

!

(gR™1)'=0

%(f)kngh Rnfl

(3.9

(3.6

Solutions to the above field equations can be written as

i
[T

(3.7)
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whereC; andC, are two independent integration constants

and the third integration constant

g ("m(-2)

w(clcz)nfz-
1)
The exponents are
1 2 1 1
“1:7((n—2) (n—-Lya) 2@ 272
1 2

“3:7<(n—2) (n—l)a>' =2,

1

2
as=—7y 1+—(n—1)a)+§’

with

1

M (n-2\
1+ o —=
a?\n—-1

Some special cases deserve attention.

‘y:

(i) For Q=0 and ¢=const, we obtain the Tangherlini
solution[1], which is a generalization of the Schwarzschild

solution inD=n+1 dimensions,

2M
g=—1- (-2

(i) For k=0 and ¢=const, we

Nordstron metric

2m |t
dt2+(1— r”‘2> dr?+r2dQ,_,.

obtain
(D=n+1)-dimensional generalization of the Reissner- Q%=
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rn—2_r8—2 Bo

¢(r)=(—zn_2 = ) : (3.10
r"=—“+rg

where in order to ease comparison, we use the parametriza-
tion

and B, satisfies 4(1—2)r3‘2,81=C, wherery and C are
integration constants.

A consideration of the asymptotic behavior of the fields in
the Brans-Dicke frame will allow us to determine a relation-
ship satisfied by the mass, dilaton charge, and magnetic
chargeQ. The mass of the black hole is defined to be

2M= lim r"2(1—f2)=(C,)" 2+ (J—279)(Cy)" "2,

r—o

(3.11
wherey=1—[4y/(n—1)a]. The scalar charge
: ¢’ 04
S=limr"l—=2(n-2)=(Cy)""2 3.1
lim (772 =2(n=2) 2 (Cy) (3.12
Finally, the magnetic charge can be found from
Q=lim r""1g=Q. (3.13

r—o

Therefore, by eliminating the integration consta@ts and
C, above, we can find the following relationship between

(3.8 these three physical parameters:

the 2(n-2)S.

_ad
kKl (2y— ’y)m'f‘ZM . (3.19

Q2 oM From this relationship, sinc® is a real parameter, the BPS
g=—|1+ (=1 (n—2)r 22 rn_z)dtz bound respected by the mass and charge of a black hole
follows after some algebra:
Q2 2M -1 .
Y Dy R
Xdr2+r2dQ,_;. (3.9 (n—1)(n—-2)M= ; 1Ql
0w+ ——F-
The electric dual of this solution was also given by Tangh- n-1
erlini. (3.19
(i) For Q=0, we obtain solutions that generalize the ided
Janis-Newman-Winicour solutions of the Einstein-massles8 V%€
scalar field equations tB dimensiong4]: ke1\2 n—2
— | = ——ow+1. 3.1
R(r)=rh(r), ( 2 ) no1® (3.16

rn—Z_rB—Z)ﬁl—ﬁz

“”:(W

n-2 n—-2
r +ry

0
h(r):{l—(T

r )2(n—2)r/(n—2)< rn—2_r8—2) —B1/(n=2)— By

IV. CONCLUSION

A conformally scale-invariant theor§2.1) is obtained for
the parameter valuesw=-—[n/(n—1)] and k=-[(n
—3)/(n—1)]. A class of static, spherically symmetric solu-
tions to the conformally scale invariant theory may be
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reached from the solution@.7) above by taking the limit
a—0 andk—O0 with the ratiok/« kept fixed:
Cl n—271—-B/(n—1)
R(r)=r[1—(7)

r C, n—211/2| C, n—211/2—[B/(n—1)]
o= 1‘(?) 1‘(?) -
r C, n—-21-1/ C, n—21-1/2-[B/(n—1)]
ho= 1‘(?) 1‘(?) ’
) ) (4.1
C n—-218
s3]
Q
g(r)=W,

whereC,; andC, are constants and andQ should satisfy

2B(n—2)%(C,Cy)"?=Q7.
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valuesQ=0 andC,=0 in D=4 dimensions brings Egs.
(4.1) to Bekenstein’s Einstein-conformal scalar solutj@#].

The fact that this solution describes black holes was later
clarified by Bekensteifl5]. His argument is based on the
observation that the scalar particles being postulated to fol-
low geodesic world lines in Brans-Dicke thedi7] presup-
poses that the scalar field does not couple directly to matter.
On the other hand, by assuming a different type of scalar
field coupling to matter, one can show that neutral test par-
ticles follow conformal world lines as argued by Gay[18]

and Dirad19]. With this assumption, Bekenstein was able to
verify that solution(4.1) describes a black hole with finite
scalar charge. It is now known that the conformal world lines
are merely autoparallel curves in a non-Riemannian reformu-
lation of the Brans-Dicke theoy20]. A further reevaluation

of the locally scale-invariant solutions above from the non-
Riemannian point of view will be taken up in a separate
study.
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