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Conformal black hole solutions of axidilaton gravity in D dimensions
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Static, spherically symmetric solutions of axidilaton gravity inD dimensions are given in the Brans-Dicke
frame for arbitrary values of the Brans-Dicke constantv and an axion-dilaton coupling parameterk. The mass
and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter
family of black hole solutions in the scale-invariant limit.
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I. INTRODUCTION

It is an exciting conjecture that all superstring mod
belong to a hypothetical eleven-dimensional M theory t
would accommodate their apparent dualities. M theory a
classical theory may be considered in a low-energy li
where only the low-lying massless excitation modes cont
ute to an effective field theory. As such, it would be the sa
as simple eleven-dimensional supergravity theory. A sub
quent Kaluza-Klein reduction would bring it to a ten
dimensional theory related with the type-IIA string mod
whose gravitational sector consists of the space-time me
tensorg, dilaton scalarf, and the axion potential (p11)
form A that would minimally couple top branes. We call
such an effective gravitational field theory an axidilat
gravity in D dimensions and consider in the following i
static, spherically symmetric solutions forp5D24.

The study of black-hole solutions of higher-dimension
gravity theories started in 1963 with the generalization
Schwarzschild and Reissner-Nordstro¨m solutions toD.4
dimensions by Tangherlini@1#. These solutions were later pu
in a wider context by Myers and Perry@2#, while Gibbons
and Maeda@3# emphasized the relevance of dilaton scal
for the interpretation of such solutions. They provided a w
range of static, spherically symmetric solutions of t
coupled Einstein-antisymmetric tensor-massless scalar
equations~see also@4,5#!. On the other hand, it is a we
known fact that the scalar-tensor Brans-Dicke theory@6# may
be rewritten in terms of a conformally rescaled metric as
coupled Einstein-massless scalar field theory@7–9#. For a
particular value of the Brans-Dicke coupling paramet
namely forv52 3

2 in four dimensions, the theory become
locally scale invariant and called the Einstein-conformal s
lar field theory. We showed in a previous work that the co
formal rescaling properties of the Brans-Dicke theory can
conveniently exhibited using the non-Riemannian reformu
tion involving space-time torsion expressed in terms of
gradient of the scalar field@10#. Brans-Dicke theory has als
been generalized toD dimensions@11# and the black-hole

*Present address: Department of Physics, Lancaster Unive
Lancaster, United Kingdom.

†Present address: Department of Physics, Koc University, Is
bul, Turkey.
0556-2821/2002/65~4!/047501~4!/$20.00 65 0475
t
a

it
-
e
e-

l
ic

l
f

s
e

ld

e

r,

-
-
e
-
e

solutions of the Brans-Dicke-Maxwell field equations we
given @12,13#.

In a remarkable paper, Bekenstein@14# found two classes
of static, spherically symmetric solutions of the Einste
conformal scalar field equations, and he argued@15# that one
particular class describes black-hole solutions with sca
hair. His arguments were later repeated inD.4 dimensions
@16#. It is essential here to note that such a subclass of c
formal black-hole solutions cannot be reached by the
sumptions of Ref.@3#. In this paper, we consider axidilato
gravity in D dimensions (p5D24) in the Brans-Dicke
frame and give its static, spherically symmetric solutions
arbitrary values of two coupling parametersv andk. A one-
parameter family of conformal black-hole solutions is o
tained forv5(D21)/(D22) andk52(D24)/(D22).

II. AXIDILATON GRAVITY IN D DIMENSIONS

The dynamics of the axidilaton gravity will be determine
by a variational principle from the actionI @e,v,f,A#
5*L, where the Lagrangian densityD form is taken in the
Brans-Dicke frame as

L5
f

2
Rab∧* ~eb∧eb!2

v

2f
df∧* df2

fk

2
H∧* H.

~2.1!

Here the basic gravitational field variables are the cofra
1-forms ea, in terms of which the space-time metricg
5habe

a
^ eb, where hab5diag(2111¯). The Hodge*

map is defined so that the oriented volume form* 1
5e0∧e1∧¯en. The metric compatible torsion-free conne
tion 1-formsvb

a are obtained from the Cartan structure equ
tions

dea1vb
a∧eb50 ~2.2!

and the corresponding curvature 2-forms

Rb
a5dvb

a1vc
a∧vb

c . ~2.3!

f is the dilaton 0-form andH is a (p12)-form field that is
derived from the (p11)-form axion potentialA such that
H5dA. v andk are real parameters.

The field equations obtained from this action are

ity,

n-
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2
f

2
Rbc∧* ~ea∧eb∧ec!5

v

f
ta@f#1fkta@H#1D~ia* df!,

~2.4!

k̃d* df5
a

2
fkH∧* H, ~2.5!

d~fk* H !50, dH50, ~2.6!

where the dilaton and axion stress-energy (D21) forms are
given by

ta@f#5 1
2 ~iadf∧* df1df∧ia* df!, ~2.7!

ta@H#5 1
2 @iaH∧* H1~2 !p21H∧ia* H#,

~2.8!

respectively. We seta5k1$@2p2(n23)#/(n21)% and k̃
5v1@n/(n21)#.

The same action may be rewritten in terms of theD
2p22)-form field

G[fk* H ~2.9!

that is dual to the axion (p12)-form field H. We have, in
terms ofG,

L5
f

2
Rab∧* ~ea∧eb!2

v

2f
df∧* df1

f2k

2
G∧* G.

~2.10!

Hence given any solution$g,f,H% of the field equations
derived from Eq.~2.1!, we may write down a dual solution
$g,f,G% to the field equations derived from Eq.~2.10!. This
notion of duality generalizes the usual electric-magnetic
ality in D54 source-free electromagnetism.

Finally, we wish to point out that the passage to the E
stein frame is achieved by the following conformal rescal
of the field variables:

g̃5f2/~n21!g, f̃5 k̃1/2 ln f, H̃5H. ~2.11!

The resulting Lagrangian densityD form will be

L5 1
2 R̃ab∧ *̃ ~ ẽa∧ẽb!2 1

2 df̃∧ *̃ df̃2 1
2 expS a

k̃1/2
f̃ D H̃∧ *̃ H̃.

~2.12!

Given the above information, it is not difficult to compa
solutions obtained in the Brans-Dicke frame with those giv
in the Einstein frame.

III. STATIC, SPHERICALLY SYMMETRIC SOLUTIONS

We will be giving below the most general static, sphe
cally symmetricp5(D24) brane solution to the field equa
tions ~2.4!–~2.6!. This family of solutions generalizes th
usual magnetically charged Reissner-Nordstro¨m black-hole
solution inD54 to higher dimensions in a natural way. T
this end, we start with the ansatz
04750
-

-

n

-

g52 f 2~r !dt^ dt1h2~r !dr ^ dr1R2~r !dVn21 ~3.1!

for the metric tensor (D5n11), f5f(r ) for the dilaton
0-form, andH5g(r )e1∧e2∧e3

¯∧en21 for the axion field
(D22) form. We sete05 f (r )dt anden5h(r )dr. Then the
Einstein field equations reduce to the following set of or
nary coupled differential equations~a prime denotes a partia
derivative with respect tor!:

fF ~n22!~n21!h

2R2 F12S R8

h D 2G2
~n21!

R S R8

h D 8G
5

v

2f S f82

h D1
fk

2
g2h1S f8

h D 8
1~n21!

f8R8

hR
, ~3.2!

fH ~n22! f 8R8

hR
1S f 8

h D 8
1

~n22! f

R S R8

h D 8

2
~n23!~n22! f h

2R2 F12S R8

h D 2G J
52

v f

2fh
f821

fkg2f h

2
2S f8 f

h D 8

2~n22!
f8 f

hR
, ~3.3!

fF ~n21!~n22! f

2R2 F12S R8

h D 2G2~n21!
f 8R8

h2R G
52

v f f82

2fh2 1
g2f fk

2
1

f 8f8

h2

1~n21!
f R8f8

h2R
, ~3.4!

while the dilaton field equation becomes

k̃S f8
f

h
Rn21D 8

5
a

2
fkg2f hRn21 ~3.5!

and the axion field equation reads

~gRn21!850. ~3.6!

Solutions to the above field equations can be written a

R~r !5r F12S C1

r D n22Ga3

,

f ~r !5F12S C2

r D n22Ga4F12S C1

r D n22Ga5

,

h~r !5F12S C2

r D n22Ga2F12S C1

r D n22Ga1

,

~3.7!

f5F12S C1

r D n22G2g/a

,

g~r !5
Q

Rn21 ,
1-2
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whereC1 andC2 are two independent integration constan
and the third integration constant

Q25
~n21!~n22!

11
a2

4k S n21

n22D ~C1C2!n22.

The exponents are

a15gS 1

~n22!
2

2

~n21!a D2
1

2
, a252

1

2
,

a35gS 1

~n22!
2

2

~n21!a D , a45 1
2 ,

a552gS 11
2

~n21!a D1
1

2
,

with

g5
1

11
4k̃

a2 S n22

n21
D .

Some special cases deserve attention.
~i! For Q50 and f5const, we obtain the Tangherlin

solution @1#, which is a generalization of the Schwarzsch
solution inD5n11 dimensions,

g52S 12
2M

r n22Ddt21S 12
2M

r n22D 21

dr21r 2dVn21 .

~3.8!

~ii ! For k50 and f5const, we obtain the
(D5n11)-dimensional generalization of the Reissn
Nordström metric

g52S 11
Q2

~n21!~n22!r 2~n22!2
2M

r n22Ddt2

1S 11
Q2

~n21!~n22!r 2~n22!2
2M

r n22D 21

3dr21r 2dVn21 . ~3.9!

The electric dual of this solution was also given by Tang
erlini.

~iii ! For Q50, we obtain solutions that generalize th
Janis-Newman-Winicour solutions of the Einstein-massl
scalar field equations toD dimensions@4#:

R~r !5rh~r !,

f ~r !5S r n222r 0
n22

r n221r 0
n22D b12b2

,

h~r !5F12S r 0

r D 2~n22!G1/~n22!S r n222r 0
n22

r n221r 0
n22D 2b1 /~n22!2b2

,

04750
-

-

s

f~r !5S r n222r 0
n22

r n221r 0
n22D b2

, ~3.10!

where in order to ease comparison, we use the paramet
tion

b25A4~n21!

~n22!k̃
~42b1

2!

and b1 satisfies 4(n22)r 0
n22b15C, where r 0 and C are

integration constants.
A consideration of the asymptotic behavior of the fields

the Brans-Dicke frame will allow us to determine a relatio
ship satisfied by the mass, dilaton charge, and magn
chargeQ. The mass of the black hole is defined to be

2M[ lim
r→`

r n22~12 f 2!5~C2!n221~ g̃22g!~C1!n22,

~3.11!

whereg̃512@4g/(n21)a#. The scalar charge

S[ lim
r→`

r n21
f8

f
52~n22!

g

a
~C1!n22. ~3.12!

Finally, the magnetic charge can be found from

Q[ lim
r→`

r n21g5Q. ~3.13!

Therefore, by eliminating the integration constantsC1 and
C2 above, we can find the following relationship betwe
these three physical parameters:

Q25
2~n22!S

a
k̃F ~2g2g̃ !

aS

2~n22!g
12M G . ~3.14!

From this relationship, sinceS is a real parameter, the BP
bound respected by the mass and charge of a black
follows after some algebra:

~n21!~n22!M>A11
n22

n21
v2S k21

2 D 2

v1
n

n21

uQu

~3.15!

provided

S k21

2 D 2

<
n22

n21
v11. ~3.16!

IV. CONCLUSION

A conformally scale-invariant theory~2.1! is obtained for
the parameter valuesv52@n/(n21)# and k52@(n
23)/(n21)#. A class of static, spherically symmetric solu
tions to the conformally scale invariant theory may
1-3
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reached from the solutions~3.7! above by taking the limit
a→0 andk̃→0 with the ratiok̃/a kept fixed:

R~r !5r F12S C1

r D n22G2b/~n21!

,

f ~r !5F12S C2

r D n22G1/2F12S C1

r D n22G1/22@b/~n21!#

,

h~r !5F12S C2

r D n22G21/2F12S C1

r D n22G21/22@b/~n21!#

,

~4.1!

f5F12S C1

r D n22Gb

,

g~r !5
Q

Rn21 ,

whereC1 andC2 are constants andb andQ should satisfy

2b~n22!2~C1C2!n225Q2.

We also verified this solution directly by substituting into t
scale-invariant field equations. The special case of param
04750
ter

valuesQ50 and C250 in D54 dimensions brings Eqs
~4.1! to Bekenstein’s Einstein-conformal scalar solution@14#.
The fact that this solution describes black holes was la
clarified by Bekenstein@15#. His argument is based on th
observation that the scalar particles being postulated to
low geodesic world lines in Brans-Dicke theory@17# presup-
poses that the scalar field does not couple directly to ma
On the other hand, by assuming a different type of sca
field coupling to matter, one can show that neutral test p
ticles follow conformal world lines as argued by Gu¨rsey@18#
and Dirac@19#. With this assumption, Bekenstein was able
verify that solution~4.1! describes a black hole with finite
scalar charge. It is now known that the conformal world lin
are merely autoparallel curves in a non-Riemannian reform
lation of the Brans-Dicke theory@20#. A further reevaluation
of the locally scale-invariant solutions above from the no
Riemannian point of view will be taken up in a separa
study.
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