186 research outputs found

    Heave-pitch-roll analysis and testing of air cushion landing systems

    Get PDF
    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent

    Dynamic heave-pitch analysis of air cushion landing systems

    Get PDF
    A program to develop analytical tools for evaluating the dynamic performance of Air Cushion Landing Systems (ACLS) is described. The heave (vertical) motion of the ACLS was analyzed, and the analysis was extended to cover coupled heave-pitch motions. The mathematical models developed are based on a fundamental analysis of the body dynamics and fluid mechanics of the aircraft-cushion-runway interaction. The air source characteristics, flow losses in the feeding ducts, trunk and cushion, the effects of fluid compressibility, and dynamic trunk deflections, including ground contact are considered. A computer program, based on the heave-pitch analysis, was developed to simulate the dynamic behavior of an ACLS during landing impact and taxi over an irregular runway. The program outputs include ACLS motions, loadings, pressures, and flows as a function of time. To illustrate program use, three basic types of simulations were carried out. The results provide an initial indication of ACLS performance during (1) a static drop, (2) landing impact, and (3) taxi over a runway irregularity

    Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition

    Get PDF
    Acknowledgments We acknowledge Jeanette Wagener and Louise Walker for performing the HPAEC-PAD analysis and Neil Gow for providing access to the Dionex HPAEC-PAD instrumentation. We thank Mike Cook and the Duke University Cancer Center Flow Cytometry Shared Resource for assistance with the flow cytometry. We also acknowledge Michelle Plue and the Duke University Shared Materials Institute Facility for performing the transmission electron microscopy. We thank Marcel Wu¨thrich for providing the MyD88-/-and TLR2/4-/- mice, and Mari Shinohara and Elizabeth Deerhake for providing the Dectin-1-/- mice. Funding: These experiments were supported by a National Institutes of Health grant awarded to JAA and FLW, Jr. (R01 AI074677, https://grants.nih.gov/grants/oer.html). CM and colleagues Jeanette Wagener, Louise Walker, Neil Gow were supported by the Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377, https://wellcome.ac.uk), Wellcome Trust Senior Investigator Award (101873) and the MRC Centre for Medical Mycology (MR/N006364/1, https://www.abdn.ac.uk/cmm/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    The Vaginal Microbiome: Disease, Genetics and the Environment

    Get PDF
    The vagina is an interactive interface between the host and the environment. Its surface is covered by a protective epithelium colonized by bacteria and other microorganisms. The ectocervix is nonsterile, whereas the endocervix and the upper genital tract are assumed to be sterile in healthy women. Therefore, the cervix serves a pivotal role as a gatekeeper to protect the upper genital tract from microbial invasion and subsequent reproductive pathology. Microorganisms that cross this barrier can cause preterm labor, pelvic inflammatory disease, and other gynecologic and reproductive disorders. Homeostasis of the microbiome in the vagina and ectocervix plays a paramount role in reproductive health. Depending on its composition, the microbiome may protect the vagina from infectious or non-infectious diseases, or it may enhance its susceptibility to them. Because of the nature of this organ, and the fact that it is continuously colonized by bacteria from birth to death, it is virtually certain that this rich environment evolved in concert with its microbial flora. Specific interactions dictated by the genetics of both the host and microbes are likely responsible for maintaining both the environment and the microbiome. However, the genetic basis of these interactions in both the host and the bacterial colonizers is currently unknown. _Lactobacillus_ species are associated with vaginal health, but the role of these species in the maintenance of health is not yet well defined. Similarly, other species, including those representing minor components of the overall flora, undoubtedly influence the ability of potential pathogens to thrive and cause disease. Gross alterations in the vaginal microbiome are frequently observed in women with bacterial vaginosis, but the exact etiology of this disorder is still unknown. There are also implications for vaginal flora in non-infectious conditions such as pregnancy, pre-term labor and birth, and possibly fertility and other aspects of women’s health. Conversely, the role of environmental factors in the maintenance of a healthy vaginal microbiome is largely unknown. To explore these issues, we have proposed to address the following questions:

*1.	Do the genes of the host contribute to the composition of the vaginal microbiome?* We hypothesize that genes of both host and bacteria have important impacts on the vaginal microbiome. We are addressing this question by examining the vaginal microbiomes of mono- and dizygotic twin pairs selected from the over 170,000 twin pairs in the Mid-Atlantic Twin Registry (MATR). Subsequent studies, beyond the scope of the current project, may investigate which host genes impact the microbial flora and how they do so.
*2.	What changes in the microbiome are associated with common non-infectious pathological states of the host?* We hypothesize that altered physiological (e.g., pregnancy) and pathologic (e.g., immune suppression) conditions, or environmental exposures (e.g., antibiotics) predictably alter the vaginal microbiome. Conversely, certain vaginal microbiome characteristics are thought to contribute to a woman’s risk for outcomes such as preterm delivery. We are addressing this question by recruiting study participants from the ~40,000 annual clinical visits to women’s clinics of the VCU Health System.
*3.	What changes in the vaginal microbiome are associated with relevant infectious diseases and conditions?* We hypothesize that susceptibility to infectious disease (e.g. HPV, _Chlamydia_ infection, vaginitis, vaginosis, etc.) is impacted by the vaginal microbiome. In turn, these infectious conditions clearly can affect the ability of other bacteria to colonize and cause pathology. Again, we are exploring these issues by recruiting participants from visitors to women’s clinics in the VCU Health System.

Three kinds of sequence data are generated in this project: i) rDNA sequences from vaginal microbes; ii) whole metagenome shotgun sequences from vaginal samples; and iii) whole genome shotgun sequences of bacterial clones selected from vaginal samples. The study includes samples from three vaginal sites: mid-vaginal, cervical, and introital. The data sets also include buccal and perianal samples from all twin participants. Samples from these additional sites are used to test the hypothesis of a per continuum spread of bacteria in relation to vaginal health. An extended set of clinical metadata associated with these sequences are deposited with dbGAP. We have currently collected over 4,400 samples from ~100 twins and over 450 clinical participants. We have analyzed and deposited data for 480 rDNA samples, eight whole metagenome shotgun samples, and over 50 complete bacterial genomes. These data are available to accredited investigators according to NIH and Human Microbiome Project (HMP) guidelines. The bacterial clones are deposited in the Biodefense and Emerging Infections Research Resources Repository ("http://www.beiresources.org/":http://www.beiresources.org/). 

In addition to the extensive sequence data obtained in this study, we are collecting metadata associated with each of the study participants. Thus, participants are asked to complete an extensive health history questionnaire at the time samples are collected. Selected clinical data associated with the visit are also obtained, and relevant information is collected from the medical records when available. This data is maintained securely in a HIPAA-compliant data system as required by VCU’s Institutional Review Board (IRB). The preponderance of these data (i.e., that judged appropriate by NIH staff and VCU’s IRB are deposited at dbGAP ("http://www.ncbi.nlm.nih.gov/gap":http://www.ncbi.nlm.nih.gov/gap). Selected fields of this data have been identified by NIH staff as ‘too sensitive’ and are not available in dbGAP. Individuals requiring access to these data fields are asked to contact the PI of this project or NIH Program Staff. 
&#xa

    PhillydotMap: The Shape of Philadelphia

    Get PDF
    This book is the outgrowth of a working group entitled, “Modeling Urban Environmental Impacts on Health, Development, and Behavior sponsored by the University of Pennsylvania Institute for Urban Research. The purpose of the working gropu was to engage faculty from across campus and to encourage their collaborative use of GIS technology in the modeling of urban form and function. These ten chapters represent a wide range of GIS applications, from community-based social services to public history to social science research

    Fatal Disseminated Cryptococcus gattii Infection in New Mexico

    Get PDF
    We report a case of fatal disseminated infection with Cryptococcus gattii in a patient from New Mexico. The patient had no history of recent travel to known C. gattii-endemic areas. Multilocus sequence typing revealed that the isolate belonged to the major molecular type VGIII. Virulence studies in a mouse pulmonary model of infection demonstrated that the strain was less virulent than other C. gattii strains. This represents the first documented case of C. gattii likely acquired in New Mexico

    Validation of the Tetracycline Regulatable Gene Expression System for the Study of the Pathogenesis of Infectious Disease

    Get PDF
    Understanding the pathogenesis of infectious disease requires the examination and successful integration of parameters related to both microbial virulence and host responses. As a practical and powerful method to control microbial gene expression, including in vivo, the tetracycline-regulatable system has recently gained the favor of many investigative groups. However, some immunomodulatory effects of the tetracyclines, including doxycycline, could potentially limit its use to evaluate host responses during infection. Here we have used a well-established murine model of disseminated candidiasis, which is highly dependent on both the virulence displayed by the fungal cells and on the host immune status, to validate the use of this system. We demonstrate that the pathogenesis of the wild type C. albicans CAF2-1 strain, which does not contain any tet-regulatable element, is not affected by the presence of doxycycline. Moreover levels of key cytokines, chemokines and many other biomarkers, as determined by multi-analyte profiling, remain essentially unaltered by the presence of the antibiotic during infection. Our results indicate that the levels of doxycycline needed to control the tetracycline regulatable promoter gene expression system have no detectable effect on global host responses during candidiasis. Because tet-regulatable systems are now being increasingly used in a variety of pathogenic microorganisms, these observations have wide implications in the field of infectious diseases

    Cryptococcus neoformans induces IL-8 secretion and CXCL1 expression by human bronchial epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cryptococcus neoformans </it>(<it>C. neoformans</it>) is a globally distributed fungal pathogen with the potential to cause serious disease, particularly among immune compromised hosts. Exposure to this organism is believed to occur by inhalation and may result in pneumonia and/or disseminated infection of the brain as well as other organs. Little is known about the role of airway epithelial cells in cryptococcal recognition or their ability to induce an inflammatory response.</p> <p>Methods</p> <p>Immortalized BEAS-2B bronchial epithelial cells and primary normal human bronchial epithelium (NHBE) were stimulated <it>in vitro </it>with encapsulated or acapsular <it>C. neoformans </it>cultivated at room temperature or 37°C. Activation of bronchial epithelial cells was characterized by analysis of inflammatory cytokine and chemokine expression, transcription factor activation, fungal-host cell association, and host cell damage.</p> <p>Results</p> <p>Viable <it>C. neoformans </it>is a strong activator of BEAS-2B cells, resulting in the production of the neutrophil chemokine Interleukin (IL)-8 in a time- and dose-dependent manner. IL-8 production was observed only in response to acapsular <it>C. neoformans </it>that was grown at 37°C. <it>C. neoformans </it>was also able to induce the expression of the chemokine CXCL1 and the transcription factor CAAT/enhancer-binding protein beta (CEBP/β) in BEAS-2B cells. NHBE was highly responsive to stimulation with <it>C. neoformans</it>; in addition to transcriptional up regulation of CXCL1, these primary cells exhibited the greatest IL-8 secretion and cell damage in response to stimulation with an acapsular strain of <it>C. neoformans</it>.</p> <p>Conclusion</p> <p>This study demonstrates that human bronchial epithelial cells mediate an acute inflammatory response to <it>C. neoformans </it>and are susceptible to damage by this fungal pathogen. The presence of capsular polysaccharide and <it>in vitro </it>fungal culture conditions modulate the host inflammatory response to <it>C. neoformans</it>. Human bronchial epithelial cells are likely to contribute to the initial stages of pulmonary host defense <it>in vivo</it>.</p

    A Common Carcinogen Benzo[a]pyrene Causes Neuronal Death in Mouse via Microglial Activation

    Get PDF
    BACKGROUND: Benzo[a]pyrene (B[a]P) belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked) food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our study throws light on other health hazards that such pollutants may exert

    Risk Factors and Outcomes of Candidemia Caused by Biofilm-Forming Isolates in a Tertiary Care Hospital

    Get PDF
    Very few data exist on risk factors for developing biofilm-forming Candida bloodstream infection (CBSI) or on variables associated with the outcome of patients treated for this infection. METHODS AND FINDINGS: We identified 207 patients with CBSI, from whom 84 biofilm-forming and 123 non biofilm-forming Candida isolates were recovered. A case-case-control study to identify risk factors and a cohort study to analyze outcomes were conducted. In addition, two sub-groups of case patients were analyzed after matching for age, sex, APACHE III score, and receipt of adequate antifungal therapy. Independent predictors of biofilm-forming CBSI were presence of central venous catheter (odds ratio [OR], 6.44; 95% confidence interval [95% CI], 3.21-12.92) or urinary catheter (OR, 2.40; 95% CI, 1.18-4.91), use of total parenteral nutrition (OR, 5.21; 95% CI, 2.59-10.48), and diabetes mellitus (OR, 4.47; 95% CI, 2.03-9.83). Hospital mortality, post-CBSI hospital length of stay (LOS) (calculated only among survivors), and costs of antifungal therapy were significantly greater among patients infected by biofilm-forming isolates than those infected by non-biofilm-forming isolates. Among biofilm-forming CBSI patients receiving adequate antifungal therapy, those treated with highly active anti-biofilm (HAAB) agents (e.g., caspofungin) had significantly shorter post-CBSI hospital LOS than those treated with non-HAAB antifungal agents (e.g., fluconazole); this difference was confirmed when this analysis was conducted only among survivors. After matching, all the outcomes were still favorable for patients with non-biofilm-forming CBSI. Furthermore, the biofilm-forming CBSI was significantly associated with a matched excess risk for hospital death of 1.77 compared to non-biofilm-forming CBSI. CONCLUSIONS: Our data show that biofilm growth by Candida has an adverse impact on clinical and economic outcomes of CBSI. Of note, better outcomes were seen for those CBSI patients who received HAAB antifungal therapy
    corecore