61,734 research outputs found

    Propagation of Love waves in layers with irregular boundaries

    Get PDF
    Propagation of Love waves in layers with irregular boundaries studied by earth model in which half space is elasti

    Averting the magnetic braking catastrophe on small scales: disk formation due to Ohmic dissipation

    Full text link
    We perform axisymmetric resistive MHD calculations that demonstrate that centrifugal disks can indeed form around Class 0 objects despite magnetic braking. We follow the evolution of a prestellar core all the way to near-stellar densities and stellar radii. Under flux-freezing, the core is braked and disk formation is inhibited, while Ohmic dissipation renders magnetic braking ineffective within the first core. In agreement with observations that do not show evidence for large disks around Class 0 objects, the resultant disk forms in close proximity to the second core and has a radius of only 10 R\approx 10~R_{\odot} early on. Disk formation does not require enhanced resistivity. We speculate that the disks can grow to the sizes observed around Class II stars over time under the influence of both Ohmic dissipation and ambipolar diffusion, as well as internal angular momentum redistribution.Comment: 4 pages, 3 figures, accepted by A&A Letter

    Towards time-dependent, non-equilibrium charge-transfer force fields: Contact electrification and history-dependent dissociation limits

    Full text link
    Force fields uniquely assign interatomic forces for a given set of atomic coordinates. The underlying assumption is that electrons are in their quantum-mechanical ground state or in thermal equilibrium. However, there is an abundance of cases where this is unjustified because the system is only locally in equilibrium. In particular, the fractional charges of atoms, clusters, or solids tend to not only depend on atomic positions but also on how the system reached its state. For example, the charge of an isolated solid -- and thus the forces between atoms in that solid -- usually depends on the counterbody with which it has last formed contact. Similarly, the charge of an atom, resulting from the dissociation of a molecule, can differ for different solvents in which the dissociation took place. In this paper we demonstrate that such charge-transfer history effects can be accounted for by assigning discrete oxidation states to atoms. With our method, an atom can donate an integer charge to another, nearby atom to change its oxidation state as in a redox reaction. In addition to integer charges, atoms can exchange "partial charges" which are determined with the split charge equilibration method.Comment: 11 pages, 7 figure

    Contact mechanics of and Reynolds flow through saddle points: On the coalescence of contact patches and the leakage rate through near-critical constrictions

    Full text link
    We study numerically local models for the mechanical contact between two solids with rough surfaces. When the solids softly touch either through adhesion or by a small normal load LL, contact only forms at isolated patches and fluids can pass through the interface. When the load surpasses a threshold value, LcL_c, adjacent patches coalesce at a critical constriction, i.e., near points where the interfacial separation between the undeformed surfaces forms a saddle point. This process is continuous without adhesion and the interfacial separation near percolation is fully defined by scaling factors and the sign of LcLL_c-L. The scaling factors lead to a Reynolds flow resistance which diverges as (LcL)β(L_c-L)^\beta with β=3.45\beta = 3.45. Contact merging and destruction near saddle points becomes discontinuous when either short-range adhesion or specific short-range repulsion are added to the hard-wall repulsion. These results imply that coalescence and break-up of contact patches can contribute to Coulomb friction and contact aging.Comment: 6 pages, 6 figures, submitted to Euro. Phys. Let

    Action Potential Onset Dynamics and the Response Speed of Neuronal Populations

    Full text link
    The result of computational operations performed at the single cell level are coded into sequences of action potentials (APs). In the cerebral cortex, due to its columnar organization, large number of neurons are involved in any individual processing task. It is therefore important to understand how the properties of coding at the level of neuronal populations are determined by the dynamics of single neuron AP generation. Here we analyze how the AP generating mechanism determines the speed with which an ensemble of neurons can represent transient stochastic input signals. We analyze a generalization of the θ\theta-neuron, the normal form of the dynamics of Type-I excitable membranes. Using a novel sparse matrix representation of the Fokker-Planck equation, which describes the ensemble dynamics, we calculate the transmission functions for small modulations of the mean current and noise noise amplitude. In the high-frequency limit the transmission function decays as ωγ\omega^{-\gamma}, where γ\gamma surprisingly depends on the phase θs\theta_{s} at which APs are emitted. In a physiologically plausible regime up to 1kHz the typical response speed is, however, independent of the high-frequency limit and is set by the rapidness of the AP onset, as revealed by the full transmission function. In this regime modulations of the noise amplitude can be transmitted faithfully up to much higher frequencies than modulations in the mean input current. We finally show that the linear response approach used is valid for a large regime of stimulus amplitudes.Comment: Submitted to the Journal of Computational Neuroscienc

    Probing in-medium vector meson decays by double-differential di-electron spectra in heavy-ion collisions at SIS energies

    Full text link
    Within a transport code simulation for heavy-ion collisions at bombarding energies around 1 AGeV, we demonstrate that double-differential di-electron spectra with suitable kinematical cuts are useful to isolate (i) the ρ\rho meson peak even in case of strong broadening, and (ii) the in-medium ω\omega decay contribution. The expected in-medium modifications of the vector meson spectral densities can thus be probed in this energy range via the di-electron channel
    corecore