

PROPAGATION OF LOVE WAVES IN LAYERS

WITH IRREGUIAR BOURDARIES

Prepared for the
Office of University Affairs
National Aeronautics and Space Administration

under Grant
NGR-33-016-067
April 1968

NEW YORK UNIVERSITY New York, N.Y.

PROPAGATION OF LOVE WAVES IN LAYERS

WITH IRREGULAR BOUNDARIES

by

Barry Wolf
Assistant Professor of Mechanical Engineering New York University

Prepared for the Office of University Affairs National Aeronautics and Space Administration under Research Grant NGR-33-016-067

INTRODUCTION

In a first approach to the study of Love Waves in the earth, the author has considered an earth model consisting of an elastic layer having an irregular boundary, overlying a rigid half-space [2]. The present work treats the same problem using the more realistic earth model in which the half-space is elastic.

DISCUSSION OF PROBIEM

We consider the field which results when a horizontally polarized shear wave, propagating in the plane portion of an elastic layer, is incident on the irregular portion

figure 2

The interface between the layer and half-space is given by $z=0$ and the upper boundary may be described by $z=z_{B}$ where

$$
\begin{aligned}
& z_{B}=-H+\operatorname{bh}(x), \quad h(x)=0 \text { for } x \leq 0, x \geq L \\
& h(x)=f(x) \text { for } 0 \leq x \leq L
\end{aligned}
$$

and b is the maximum amplitude of the boundary irregularities. For physical reasons we require that the scattered field have only outgoing waves at $x= \pm \infty$ and at $z=\infty$.

Assuming a harmonic time variation $e^{i \omega t}$ the equations of motion became

$$
\begin{equation*}
\frac{\partial^{2} v_{i}}{\partial x^{2}}+\frac{\partial^{2} v_{i}}{\partial z^{2}}+k_{i}^{2} v_{i}=0, \quad 1=1,2 \tag{1}
\end{equation*}
$$

where the subscripts 1 and 2 refer to the layer and half-space respectively, and $k_{i}=n / c_{i}$, the c_{i} 's being the shear wave velocities, and the $V_{i}^{\prime} s$ the displacement components in the y direction.

The boundary condition on the traction free upper boundary may be written

$$
\begin{equation*}
\frac{\partial V_{1}}{\partial z}-b h^{\prime} \frac{\partial V_{1}}{\partial x}=0 \text { on } z=z_{B}, \text { where } h^{\prime}=\frac{d h}{d x} \tag{2}
\end{equation*}
$$

The displacement and stress continuity on the lower boundary yields

$$
V_{1}=V_{2}
$$

$$
\begin{equation*}
\text { on } z=0 \tag{3}
\end{equation*}
$$

$$
\text { and } u_{1} \frac{\partial v_{1}}{\partial z}=u_{2} \frac{\partial V_{2}}{\partial z}
$$

where μ_{1} and μ_{2} are material constants.

The incident wave which exists under the flat boundary may be written in the form

$$
\begin{align*}
& V_{1, i n}=A \cos _{1}(z+H) e^{-i \alpha x} \tag{4}\\
& V_{2, i n}=A e^{-\beta_{2} 2} \cos \beta_{1} H e^{-i \alpha x}
\end{align*}
$$

Since we are only concerned with propagating disturbances, we will consider only roots of (5) for which α is real, such roots exist only if $k_{1}>k_{2}$ r27.

In order to arrive at the scattered field described qualitatively in the problem discussion above we assume a solution, which satisfies the wave equations (1), in the form of a contour integral in the complex v plane given by

$$
V_{1, \text { scat. }}=\int_{c}\left[B(v) e^{i I_{1}^{2}}+C(v) e^{-i^{*}} I^{2}\right] e^{-i v x} d v, \text { with } \varepsilon_{1}=\left(k_{1}^{2}-v^{2}\right)^{\frac{1}{2}}
$$

$$
\begin{equation*}
V_{2, \text { scat. }}=\int_{c} D(v) e^{-2^{z}} e^{-i v x_{x}} d v, \text { with } \varepsilon_{2}=\left(v^{2}-k_{2}^{2}\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

where the contour c is shown in figure 2 .

Substituting (6) into the boundary conditions (3) it is found that the functions $B(v), C(v)$ and $D(v)$ are related by

$$
\begin{equation*}
C=\frac{(\gamma-1)}{(\gamma+1)} B, \quad D=\frac{2 \gamma}{\gamma+1} B \tag{7}
\end{equation*}
$$

where $\quad \gamma=\frac{u_{1}{ }^{q}{ }_{1}}{u_{2}^{\varepsilon}{ }_{2}}$

Using (7) in (6) an expression for the total displacement fields in the layer and half-space may be written

$$
\begin{equation*}
V_{1}=V_{1, \text { in }}+V_{1, s \operatorname{cat}}=A \cos B_{1}(2+H) e^{-i \alpha x}+\int_{c} \frac{2 B(v)}{1+\gamma}\left[y \cos z_{1} z-i \sin { }_{1} z\right] e^{-i v x} d v \tag{8}
\end{equation*}
$$

$V_{2}=V_{2, \text { in }}+V_{2, s c a t}=A e^{-\beta_{2} z} \cos \beta_{2} H e^{-i \alpha x}+\int \frac{2 \gamma B(v)}{1+\gamma} e^{-F} 2^{z} e^{-i v x} d v$

These expressions for the displacement field satisfy the wave equation and the boundary conditions (3), it remains to determine $B(v)$ such that the boundary condition (2) is satisfied. Accordingly, inserting
the first of (8) into (2), we arrive at the following form of the boundary condition (2),

$$
\begin{align*}
& A e^{-i \alpha x}\left(-\beta_{1} \sin \beta_{1}^{b h}+i \alpha b h^{\prime} \cos \beta_{1}^{b h}\right) \\
& -\int_{c} \frac{2 B(\nu)}{1+\gamma}\left\{\varepsilon_{1}\left[\gamma \sin F_{1}(-H+b h)+i \cos _{1}(-H+b h)\right]+i v h^{2}\left[\gamma \cos \varepsilon_{1}(-H+b h)\right.\right. \\
& \left.\left.-i \sin F_{1}(-H+b h)\right]\right\} e^{-i v x_{d}}=0 \tag{9}
\end{align*}
$$

The solution to this integral equation is quite formidable, however if we restrict ourselves to boundaries having small irregularities, that is $\mathrm{b} \ll 1$, we may apply a perturbation procedure to evaluate $B(v)$.

To carry out this perturbation we assume a series solution for $B(v)$ in the form

$$
\begin{equation*}
B(v)=\sum_{n=1}^{\infty} B_{n}(v) b^{n} \tag{10}
\end{equation*}
$$

Inserting (10) into (9) and expanding the resulting equation in powers of b we obtain

$$
\begin{align*}
& A e^{-i \alpha x}\left\{-\beta_{1}\left[\beta_{1}{ }^{b h}+\ldots\right]+i 0 b h^{\prime}\left[1-\left(\beta_{1} b h\right)^{2} / 2+\ldots\right]\right\} \\
& -\int_{c}[2 /(l+\gamma)]\left(B_{1}(v) b+\ldots\right)\left\{\left[\gamma\left(g_{1} b h+\ldots\right)+i\left(1-\left[g_{1} b h^{2} / 2+\ldots\right)\right]_{1}{ }_{1} \cos _{1}{ }^{H}\right.\right. \\
& \left.-\left[x^{\left(1-\left[\varepsilon_{1} b 7^{2} / 2\right.\right.}+\ldots\right)-i\left(q_{1}^{b h}+\ldots\right)\right] \varepsilon_{1} \sin \varepsilon_{1} H-i v b h^{\prime}\left[i\left(\varepsilon_{1} b h+\ldots\right)\right. \\
& \left.-\gamma\left(1-\left[\varepsilon_{1} \mathrm{bh}\right]^{2} / 2+\ldots\right)\right] \cos { }_{1} \mathrm{H}-\left[\mathrm{i}\left(1-\left[\varepsilon_{1} \mathrm{bh}\right]^{2} / 2+\ldots\right)\right. \\
& \left.\left.+\gamma\left(\varepsilon_{I} b h+\cdots\right)\right] \sin \varepsilon_{I} H\right\} e^{-i v x_{d \nu}}=0 \tag{111}
\end{align*}
$$

To first order in b we obtain
$A e^{-i \alpha x}\left(-\beta_{l}^{2} h+i \alpha h^{\prime}\right)-\int_{c}[2 /(1+\gamma)] B_{1}(v)\left(i \cos \varepsilon_{1} H-\gamma \sin { }_{l}{ }_{l} H\right) \varepsilon_{I} e^{-i v x^{d} d v=0}$
which may be inverted to yield
$B_{1}(v)=\left[A(l+\gamma) / 4 \pi F_{1}\left(i \cos ^{\varepsilon}{ }_{1} H-\gamma \sin \varepsilon_{1} H\right)\right] \int_{-\infty}^{\infty}\left(i \alpha h^{\prime}-\beta_{1}^{2} h\right) e^{i(v-\alpha) y} d y$

Inserting (13) into (8) we obtain expressions for the displacement field to first order in b, these may be written

$$
V_{1}=A \cos \beta_{1}(z+H) e^{-i \alpha x}+b \int_{-\infty}^{\infty}(A / 2 \pi)\left(i \alpha h^{\prime}-\beta_{1}^{2} h\right) e^{-i \alpha y} \int_{c} \frac{\gamma \cos \varepsilon_{1} z-i \sin \varepsilon_{1} z}{\varepsilon_{1}\left(i \cos { }_{1} H-\gamma \sin \varepsilon_{1} H\right)} e^{i v(y-x)} d v d y
$$

$\left.V_{2}=A e^{-\beta_{2} 2^{z} \cos \beta_{2} H e^{-i \alpha x}}+b \int_{-\infty}^{\infty}(A / 2 \pi)\left(i \alpha h^{\prime}-\beta_{1}^{2} h\right) e^{-i \alpha y} \int_{c} \frac{\gamma e^{-\xi_{2} z}}{\varepsilon_{1}\left(i \cos \varepsilon_{1} H-\gamma \sin E\right.}{ }_{1} H\right) ~ e^{i v(y-x)} d v d y$

Since the integrands for the contour integrals in the v plane, appearing in (14), are not single valued, the contour c must be chosen to lie on the sheet which will yield the form of solution described in the problem discussion above. Accordingly, the v plane is cut as shown in figure 3 with the contour lying on the sheet which maps into the right half ε_{2} plane under the mapping $\varepsilon_{2}=\left(v^{2}-k_{2}^{2}\right)^{\frac{1}{2}}$. To evaluate these integrals the cases $y>x$ and $y<x$ are considered separately.

Consider first the integrals

$$
\int_{c} \frac{\gamma \cos \varepsilon_{1} z-i \sin \varepsilon_{1} z}{\xi_{1}\left(i \cos \xi_{1} H-\gamma \sin \varepsilon_{1} H\right)} e^{i v(y-x)} d v
$$

and

$$
\begin{equation*}
\int_{c} \frac{\gamma e^{-\varepsilon_{2} z}}{\varepsilon_{1}\left(i \cos _{1}^{E}{ }^{H-\gamma \sin ^{\sigma}}{ }_{1} H\right)} e^{i v(y-x)} d v \text {, with } y>x \tag{15}
\end{equation*}
$$

To evaluate these integrals, the contour c is closed by arcs at infinity in the left and right upper half plane connected by a contour around the branch line, as shown in figure 3.

v plane
figure 3

The singularities of the integrands in (15) within this closed contour are poles which exist at the zeros of

$$
\operatorname{icos}_{1} H-\gamma \sin \xi_{1} H=0
$$

For the sheet chosen all of these zeros, denoted by v_{m}, lie on the real v axis and satisfy $-k_{1} \leq v_{m} \leq-k_{2}$ (1). Furthermore, if this relation (1) See Appendix
is written in the form

$$
\begin{equation*}
\tan \xi_{1} H=\frac{\mu_{2}^{E} 2}{\mu_{1} \varepsilon_{1} 1} \tag{16}
\end{equation*}
$$

a sketch of the functions on the right and left hand side reveals that there exist N such zeros, where N is the integer part of the number

$$
\left[\left(k_{1}^{2}-k_{2}^{2}\right)^{\frac{1}{2}} H / \pi\right]+1
$$

If we let

$$
G_{1}(v)=\frac{\gamma \cos \xi_{1} 2-i \sin F_{1} l^{2}}{P_{1}\left(i \cos E_{1} H-\gamma \sin E_{1} H\right)} e^{i v(y-x)}
$$

and

$$
G_{2}(v)=\frac{\gamma e^{-\xi_{2} z}}{F_{1}\left(i \cos _{1} H-\gamma \sin \varepsilon_{1} H\right)} e^{i v(y-x)}
$$

(15) may be written

$$
\begin{equation*}
\int_{c} G_{I}(v) \mathrm{d} v=2 \pi \mathrm{i} \sum \operatorname{ResG} G_{1}-\int_{\substack{\text { Branch } \\ \text { line }}}^{G_{1}}(v) \mathrm{d} v-\int_{\mathrm{c}_{\infty}} \mathrm{G}_{1}(v) \mathrm{d} v \tag{17}
\end{equation*}
$$

and

$$
\int_{c} G_{2}(v) \mathrm{d} v=2 \pi i \sum \operatorname{ResG}_{2}-\int_{\substack{\text { Branch } \\ \text { line }}}^{G_{2}(v) \mathrm{d} v-\int_{c_{\infty}} G_{2}(v) \mathrm{d} v}
$$

The residues of G_{1} and G_{2} at the poles v_{m} are given by

$$
\operatorname{ResG}_{I}=\cos \varepsilon_{I m}(H+z) e^{i \nu_{m}(y-x)} / \nu_{m} H
$$

and

$$
\begin{equation*}
m=2,2 \ldots N \tag{18}
\end{equation*}
$$

$$
\operatorname{ResG}_{2}=e^{-\kappa_{2 m}^{2}} \cos \varepsilon_{I m} H e^{i \nu_{m}(y-x)} / v_{m} H
$$

Where ${ }^{5} I m$ and $\varepsilon_{2 m}$ are ε_{1} and ε_{2} evaluated at v_{m}.

The asymptotic approximation of the integral around the branch line in the first of (17) contributes to order $1 / x^{\frac{3}{2}}$. In the second of (17)
it contributes to order $1 / x^{\frac{3}{2}}$ independent of z, and to order $e^{-k_{2} z^{2} / z^{2}}$ independent of x. Therefore, if we restrict our attention to solutions far from the irregular portion of the boundary the contribution of the branch line integrals in ($1 /$) are small compared to the contribution of the residue term.

Furthermore, since the integrals over the arcs at infinity in (17) vanish, we obtain

$$
\int_{c} G_{1}(v) d v=2 \pi i \sum_{m=1}^{N} \cos ^{\varepsilon} I m(H+z) e^{i v_{m}(y-x)} / v_{m} H
$$

and

$$
\begin{equation*}
\int_{c} G_{2}(v) d v=2 \pi i \sum_{m=1}^{N} e^{-\varepsilon} 2 m^{z} \cos ^{e}{ }_{2 m} \mathrm{He}^{i \nu_{m}(y-x)} / \nu_{m} H \tag{19}
\end{equation*}
$$

with the zeros $v_{m}<0$.
Similarly, for $\mathrm{y}<\mathrm{x}$ we may close the contour in the lower half plane and proceeding as above we obtain

$$
\begin{align*}
& \int_{c} G_{1}(v) \mathrm{d} v=-2 \pi i \sum_{m=1}^{N} \cos \Sigma_{I m}(H+z) e^{i v_{m}(y-x)} / v_{m} H \\
& \int_{c} G_{2}(v) d v=-2 \pi i \sum_{m=1}^{N} e^{-\xi_{2 m}^{z}} \cos _{I m} H e^{i v_{m}(y-x)} / v_{m} H \tag{20}
\end{align*}
$$

with the zeros $v_{\mathrm{m}}>0$.
Inserting (19) and (20) into (14), one obtains the displacement
fields

$$
\begin{aligned}
V_{1} & =A \cos \beta_{1}(z+H) e^{-i \alpha x}-i b A \sum_{m=1}^{N} \frac{\cos \xi_{j}(H+z)}{v_{m} H}\left[e^{-i \nu_{m} x^{x} x} \int_{-\infty}^{x}\left(i \alpha h^{\prime}-\beta_{1}^{2} h\right) e^{i\left(v_{m}-\alpha\right) y} d y\right. \\
& \left.+e^{i \nu_{m} x} \int_{x}^{\infty}\left(i \alpha h^{\prime}-\beta_{1}^{2} h\right) e^{-i\left(\nu_{m}+\alpha\right) y} d y\right], v_{m}>0
\end{aligned}
$$

and

$$
\begin{align*}
& v_{2}=A e^{-\beta_{2} z} \cos \beta_{2} H e^{-i \alpha x}-i b A \sum_{m=1}^{N} \frac{e^{-\xi_{2 m}{ }^{z}} \cos ^{\xi} 1 m^{H}}{v_{m}^{H}}\left[e^{-i v_{m} x} \int_{-\infty}^{x}\left(i \alpha h^{\prime}-\beta_{1}^{2} h\right) e^{i\left(v_{m}-\alpha\right) y} d y\right. \tag{21}\\
& \left.+e^{i v_{m} x} \int_{x}^{\infty}\left(i \alpha h^{\prime}-\beta_{1}^{2} h\right) e^{-i\left(v_{m}+\alpha\right) y} d y\right] ; \quad v_{m}>0
\end{align*}
$$

Since the upper boundary of the layer is given by

$$
\begin{aligned}
& h(x)=0 \text { for } x \leq 0, x \geq L \\
& h(x)=f(x) \text { for } 0 \leq x \leq L
\end{aligned}
$$

then

$$
\begin{equation*}
\int_{0}^{L} f^{\prime}(x) e^{-i p x} d x=i p \int_{0}^{L} f(x) e^{-i p x} d x \tag{22}
\end{equation*}
$$

With the aid of (22), the solution (21) may be written

for $x \ll 0$, and
$\left.v_{1}=A \cos \beta_{1}(z+H) e^{-i \alpha x}-i b A\right\rangle_{m=1}^{N} \frac{\cos I_{m}(H+z)}{v_{m} H} e^{-i \nu_{m} x}\left(\alpha \nu_{m}-k_{1}^{2}\right) \int_{0}^{I} f(y) e^{-i\left(\alpha-v_{m}\right) y} d y$
$v_{2}=A e^{-\beta_{2} 2^{2}} \cos \beta_{2} e^{-i \alpha x}-i b A \sum_{m=1}^{N} \frac{e^{-\tau} 2 m^{2} \cos \varepsilon_{1 m} H}{v_{m}^{H}} e^{-i \nu_{m} x}\left(\alpha \nu_{m}-k_{1}^{2}\right) \int_{0}^{L} f(y) e^{-i\left(\alpha-\nu_{m}\right) y} d y$
for $x \gg$.

APPENDIX

To show that on the sheet in the v plane which maps into the right half R_{2} plane, equation (16)
$\operatorname{Tan}{F_{1}}_{1}=\frac{\mu_{2} E_{2}}{\mu_{1}^{2} 1}$, where $r_{1}=\left(k_{1}^{2}-v^{2}\right)^{\frac{1}{2}}$ and $\varepsilon_{2}=\left(v^{2}-k_{2}^{2}\right)^{\frac{1}{2}}$
has only real roots $\nu_{m}, m=1,2,3 \ldots$, and these roots lie either in the interval $k_{2} \leq v_{m} \leq_{k_{1}}$ or $-k_{1} \leq_{v_{m}} \leq-k_{2}$.

We may demonstrate this by showing that the roots of (16) in the right half ${ }_{2}$ plane exist only for real ε_{2} which satisfies $0 \leq r_{2} \leq\left(k_{1}^{2}-k_{2}^{2}\right)^{\frac{1}{2}}$.

To do this let ${ }_{n} H=\alpha_{n}+i \beta_{n}, n=1$, 2. Equation (16) then becomes

$$
\begin{equation*}
\frac{\tan \alpha_{1}+i \tanh \beta_{1}}{1-i \tan \alpha_{1} \tanh \beta_{1}}=\frac{\mu_{2}\left(\alpha_{2}+i \beta_{2}\right)}{\mu_{1}\left(\alpha_{1}+i \beta_{1}\right)} \tag{A-1}
\end{equation*}
$$

and the real and imaginary parts of ($A-1$) yield

$$
\begin{align*}
& \tan \alpha_{1}=\left[\left(\mu_{2} / \mu_{1}\right) \alpha_{2}+\beta_{1} \tanh \beta_{1}\right] /\left[\alpha_{1}-\left(\mu_{2} / \mu_{1}\right) \beta_{2} \tanh \beta_{1}\right] \tag{A-2}\\
& \tan \alpha_{1}=\left[\left(\mu_{2} / \mu_{1}\right) \beta_{2}-\alpha_{1} \tanh \beta_{1}\right] /\left[\beta_{1}+\left(\mu_{2} / \mu_{1}\right) \alpha_{2} \tanh \beta_{1}\right] \tag{A-3}
\end{align*}
$$

Equating (A-2) and (A-3) we obtain

$$
\begin{align*}
& {\left[\left(\mu_{2} / \mu_{1}\right) \alpha_{2}+\beta_{1} \tanh \beta_{1}\right] /\left[\alpha_{1}-\left(\mu_{2} / \mu_{1}\right) \beta_{2} \tanh \beta_{1}\right]=} \\
& {\left[\left(\mu_{2} / \mu_{1}\right) \beta_{2}-\alpha_{1} \tanh \beta_{1}\right] /\left[\beta_{1}+\left(\mu_{2} / \mu_{1}\right) \alpha_{2} \tanh \beta_{1}\right]} \tag{A-4}
\end{align*}
$$

Furthermore, since $v^{2}=k_{1}^{2}-\varepsilon_{1}^{2}$ and $v^{2}=\varepsilon_{2}^{2}-k_{2}^{2}$, we may write

$$
k_{1}^{2}-\varepsilon_{1}^{2}=\varepsilon_{2}^{2}-k_{2}^{2}
$$

the real part of which yields $\alpha_{1} \beta_{1}=-\alpha_{2} \beta_{2}$.
Eliminating α_{1} between (A-4) and (A-5) the result may be written

$$
\begin{align*}
& \beta_{1}^{2}\left[\left(\mu_{2} / \mu_{1}\right) \alpha_{2}+\beta_{1} \tanh \beta_{1}\right] /\left[\alpha_{2}+\left(\mu_{2} / \mu_{1}\right) \beta_{1} \tanh \beta_{1}\right] \\
= & -\beta_{c}^{2}\left[\left(\mu_{2} / \mu_{1}\right) \beta_{1}+\alpha_{2} \tanh \beta_{1}\right] /\left[\beta_{1}+\left(\mu_{2} / \mu_{1}\right) \alpha_{2} \tanh \beta_{1}\right] \tag{A-6}
\end{align*}
$$

From the expression (A-6) it can be seen that if ${ }_{2}$ is not real, that is, if $\beta_{2} \neq 0$, there exists no $\alpha_{2} \geq 0$ which satisfies (A-6) since the left and right sides are always positive and negative respectively. Thus roots of (16), on the sheet of interest, exist only for ${ }_{2}$ real.

It remains to show that there are no roots for real $k_{2}^{2}>\left(k_{1}^{2}-k_{2}^{2}\right)^{\frac{1}{2}}$, that is, for $\beta_{2}=0$ and $\alpha_{2}>\left(k_{1}^{2}-k_{2}^{2}\right)^{\frac{1}{2}} \mathrm{H}$. This can be seen by observing that $\varepsilon_{2}=\alpha_{2}>\left(k_{1}^{2}-k_{2}^{2}\right)^{\frac{1}{2}}$ implies $|v|>k_{1}$ or ε_{1} is pure inaginary, that is, $\alpha_{I}=0$, and $r_{1} \mathrm{H}=i \beta_{j}$. Equation (16) becomes

$$
\tan i \beta_{1}=\frac{\mu_{2} \alpha_{2}}{i_{\mu} \beta_{1}}
$$

or

$$
\begin{equation*}
-\mu_{1} \beta_{1} \tanh \beta_{1}=\mu_{2} \alpha_{2} \tag{A-7}
\end{equation*}
$$

Since the left and right sides of (A-7) are negative and positive respectively, no roots exist.

Thus the only roots of (16) on the sheet of interest must satisfy $k_{2} \leq v_{m} \leq k_{1}$ or $-k_{1} \leq \nu_{m} \leq-k_{2}$. These are in fact the roots of the characteristic equation in the classical Love Wave problem.
[1] Wolf, B. "Propagation of Loves Waves in Surface Layers
of Varying Thickness", Pure and Appl. Geophys.,
$\quad 67,1967 / 2,76$.

