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INTRODUCTION

In a first approach to the study of Love Waves in the earth, the
author has considered an earth model consisting of an elastié layer having
an irregular boundary, overlying a rigid half-space [13.

The present work treats the same problem using the more realistic earth

model in which the half-space is elastic.

DISCUSSION OF PROBLEM

We consider the field which results when a horizontally polarized
shear wave, propagating in the plane portion of an elastic layer, is

incident on the irregular portion
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figure 2

The interface between the layer and half-space is given by z = O and

the upper boundary may be described by z = zB where




= -H+ X), h(x) = or x—0, x= L
2 H + bh(x) (x) 0 forx<o0, x2
n(x) = £(x) for 0S x< g

and b is the maximum amplitude of the boundary irregularities. For
physical reasons we require that the scattered field have only outgoing

+
waves at x = - @ and at 2z = e.

Assuming a harmonic time variation ejmt the equations of motion
became
aavi 62vi
>+ —3 4 kfvi = 0, i = 1,2 (2)
Ax dz

where the subscripts 1 and 2 refer to the layer and half-space
respectively, and ki = '"/ci’ the ci's being the shear wave velocities,
and the Vi's the displacement components in the y direction.

The boundary condition on the traction free upper boundary may

be written

v v

Ti'-bh.?% = 0 on z= zy, where h'i'gx—h (2)

The displacement and stress continuity on the lower boundary yields

on z = O (3)

ov av2

1
and uy Jz = Yo T3,

where Uy and u, are material constants.



METHOD OF SOLUTION

The incident wave which exists under the flat boundary may be

written in the form

-iox

Vl,in = A Cosﬁl(z + H e

(&)
-Bzz
v2,in = Ae Cosal}l e
1 1
with Bl (ki - 2)2 = (a kg)a and @ 1is a root of
u
ta.nﬂlH 232 (5)

N

Since we are only concerned with propagating disturbances, we will consider
only roots of (5) for which @ is real, such roots exist only if

In order to arrive at the scattered field described qualitatively in
the problem discussion above we assume a solution, which satisfies the
wave equations (1), in the form of a contour integral in the complex v
plane given by

1
Z -i* =
1 -ivx . _ ( o . )

Vi, scat. X[B(v)e + C(v)e j e " dv, with 7, = (K] v2>

(6)

-F_Z

Vo, scat. SD(v)e 27 omivkyy, with £, ( 1§)

c

Pl

where the contour ¢ is shown in figure 2.
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Substituting (6) into the boundary conditions (3) it is found that the

functions B(v), C(v) and D(v) are related by

- -1 . 2x

C = %7#—1;- B, D = 7+1B

' (7)
iUy

where y = Uggg

Using (7) in (6) an expression for the total displacement fields in the

layer and half-space may be written

-iox | 2B(v) _ vk
Vi=V9 in* V1, scat = AcosB, (z+H)e + j S [7cosﬁlz i 1smglz]e o
[
(8)
Pt ¥B(v) -, 2
V2= Vo,in * Vo,5cat @ Ae - GO e T4 .Y e 2™
| (o4

These expressions for the displacement field satisfy the wave equation
and the boundary conditions (3), it remains to determine B(v) such

that the boundary condition (2) is satisfied. Accordingly, inserting

N



the first of (8) into (2), we arrive at the following form of the
boundary condition (2),

Ae T iX (-B,sinB bh + iobh'coss,bh)

_ 2B(v) . ) . ; 1[ -
] Ty -(FJ_[yslnPl( H+bh) + 1cosPl(-H+bhj] + ivbh 700551( H+bh)
c

- isinsl(-mbh)]} R T (9)

The solution to this integral equation is quite formidable, however
if we restrict ourselves to boundaries having small irregularities, that
is b <«< 1, we may apply a perturbation procedure to evaluate B(v).

To carry out this perturbation we assume a series solution for

B(v) in the form
B(v) = ) B (V)" (20)

n=1

Inserting (10) into (9) and expanding the resulting equation in powers

of b we obtain
Ae” 10X {-sl [ﬁl’bh + ] + iobh' [1 -(Blbh)2/2 + ]}

- j |r2/(1+7)](131(v)b + ..-){[7(Elbh + a0s) + 1(1-rzlbh‘\2/2 + ...)]s’,lcosElH
(] .

-[7(1-I'Elbh'\2/2'+ ) - i(e bh + ):\ £ Sinf H - ivbh' [i(Elbh + oaes)
- 7(1-[Elbh'\2/2 + )] cost \H - [i(l—(ﬁlbma/e + >

+y (El’bh + ﬂ sinElH-}. e Mav = 0 | (11)

Ly
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To first order in b we obtain
103(_Bl h + mah' - [2/(1&7)13 (v) (1cosE H-ysin® H)F ey = o (12)
c

which may be inverted to yield

B (V) = [A(1+7)/ungl(icoseln-ysinzlﬂ)] r (mzh'-:3_?Lh)ei("'°‘)y dy (13)

- o

Inserting (13) into (8) we obtain expressions for the displacement field
to first order in b, these may be written
2-isinf_z

1 1 iv(y-x)
l(1cosF H-ysin€ H)e dvdy

yCOSE,

<!
f

1 Acosal(zm)e" j (A/2:t)(1ah'-B h)e” layj

(14)

_Ez

2
F (1cosE ;H-7sin? H)

V. = Ae"32zcosaene" +b V (A/2x ) (ioh® -B h)e myX 1V(VX)g 0y

Since the integrands for the contour integrals in the v plane,
appearing in (1l4), are not single valued, the contour c¢ must be chosen
to lie on the sheet which will yield the form of solﬁtion described in the
Problem discussion above. Accordingly, the Vv plane is cut as shown in
figure 3 with the contour lying on the sheet which maps into the right
half E, plane under the mapping F, = (v2-k§)§- To evaluate these
integrals the cases y>x and x are considered separately.

Consider first the integrals



and

To evaluate these integrals, the contour ¢ is closed by arcs at infinity

j ycosg4z-isink 12
E:l(lcosi JH-ysinf 1H)

-7
.22
Ye

gl( icosg H-ysin® lﬁj

[y Y

elv(y-x)dv’

elv(y-x) dv

with y>x

in the left and right upper half plane connected by a contour around the

branch line, as shown in figure 3.
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The singularities of the integrands in (15) within this closed contour

are poles which exist at the zeros of

For the sheet chosen all of these zeros, denoted by Vv

. . <
real v axis and satisfy kl Vm -k2 .

1cosElH - 7sin§1H = 0

<

(1) See Appendix

(1)

'’ lie on the

Furthermore, if this relation

(15)



is written in the form

(TPRJ
tan®.H = _2,53
Miha

a sketch of the functions on the right and left hand side reveals that

there exist N such zeros, where N is the integer part of the number

1
[(ki - k)2 Bfx] + 1

If we let
yCOS? 12" isinf 12
G (v) = o1v(y-x)
1 G l( icosE H-ysinf 1}{7
and
-Eaz
_ e iv(y-x)
Ga(v) = e

3 l( icosg H-ysinf lH)

(15) may be written

X Gl(v)dv = 2:tiz ResG, - X Gl(v)d'v - j‘ Gl(v)dv

c Branch c,
line

and

j G2(v)dv = 2ni z ResG, - X Ga(v)dv - X G2(v)dv

c Branch cw
line

The residues of Gl

and G2 at the poles v, are given by

(16)

(17)



iv (y-x)
ResGy = cosE, (H+ z)e /v H

and m=1, 2eeee N (18)

€, 2 ivm(y-x)

2m
o =€ cost, H e /va

o
[
[£]
(2]
"

-3
Where  Am and Eam are :1 and §2 evaluated at Vi

The asymptotic approximation of the integral around the branch line
in the first of (17) contribuggs to order 1/x “» In the second of (17)
it contributes to order 1/x independent of 2z, and to order e~k22/z 2
independent of x. Therefore, if we restrict our attention to solutions far
from the irregular portion of the boundary the contribution of the branch
line integrals in (1() are small compared to the contribution of che
residue term.

Furthermore, since the integrals over the arcs at infinity in (17)

vanish, we obtain

N R

r . al 1Vm(y-x)

] Gl(v)dv = 2:t1§J cosEJm(Hl-z)e /va

c m=1 '

and (19)

N \

, €.z iv_(y-x)

\ . 2m m

J G2(v)dv = 2ni }_ e cos®, He /va

c m=1

with the zeros vm<0.
Similarly, for xx we may close the contour in the lower half plane

and proceeding as above we obtain




N

iv (y-x)
j‘ Gl(v)dv = -21:12 cosEJm(H-l-z)e /va
c m=1
. (20)
B ? ivm(y-x)
X (}e(v)dv = -2n12 e cosE, He /va
c m=1

with the zeros vm>0.

Inserting (19) and (20) into (14), one obtains the displacement
fields

N
. cost. (Hrz) _ -iv x.x i(v <)y
- -iox *dm m st Qe n
Vi=A cosﬁl(z-i-H)e 1bA2 o [e I (ich Blh)e dy

m=1 [ ]

ivx ® -i(v_+a)y
+e © _[ (iah'-aih)e mn dy], v >0
X

and (21)
- 2z .
N 22m
~B,2z s e cos8. H_ -iv x .x i(v_-a)y
V, = he © cosB, He m!x-:i.bAE Am [e n I (iah'-B2h)e m
2 2 . va 1
m=1

dy

iv x > -i(v +a)y
m ' a2 m ,
+e j (10h’ -pn)e dy], v >0
X

Since the upper boundary of the layer is given by )

n(x) =0 for xS0, x21
n(x) = £(x) for 0= x< g,

then

10




L . L
L £'(x)e *Pax = ip& £(x) e Pax (22)

With the aid of (22), the solution (21) may be written

1o cost. (H+z) iv x -i(o+v )y
-iox J.m 2
Vy=A cosBl(z-l-H)e - 1'bAz e ™ (avm-kl) i f(y)e ™ ay
-a 2
N am
-8B,z i e cosf H iv x ~i(o+v )y
V,=Ae 2 cosp H e ¥ _ in) A (av-k)rf(y)e L
2 2 v H *)
m
for x << O, and
s cos?. (Hrz) -iv x L -i(c-v )y
~-iox “lm m 2 m
Vy=4 cosBl(z+H)e - 1bA$ e (avm-kl) & f(y)e dy
2mz ( )
-B,2 . , cosE., H -iv x L -i(a-v )y
2 -ix . Im m 2 m
V2 = A e cosBQHe - 1bA2 va e (an-kl) i f(y)e dy

for x>> L.



APPENDIX

To show that on the sheet in the v plane which maps into the

right half €, plane, equation (16)

1 1
Hofa 2 2 2 2
Tan ®.H = iFs » where ©, = (kl - vz) and 2, = (v - kg) (16)
has only real roots vm, m=1l, 2, 3 .es, and these roots lie either in
< < <. <
the interval kz—vm-k:L or -kl-vm- -k2. ‘
We may demonstrate this by showing that the roots of (16) in the
right half F,2 pline exist only for real 52 which satisfies
< < (.2 _ A2
0="¢,= (kl 2)
To do this let * H=0a + i8 , n=1, 2. Equation (16) then
becomes
tan ot i tanl‘Bl N u2(012 + 5-32) (a-1)
l1-1itan oy tanhBl p,l(al + iBl)
and the real and imaginary parts of (A-1l) yield
tan @y = | (uyfi)Ja#s, tankp, | /1 ~(u./u-)p tanng. | (a-2)
1 = | Wp/ly)OtR tanhB, | /] &y -ty Py 1
r
tan ay = [ (up/y)Bpaytente, | /{ Byt (iphsyJaytents, | (a-3)
Equating (A-2) and (A-3) we obtain
T o,r
E(u‘?/ul)az*ﬁlt&nhﬁl_l / Lal'(u2/ul)62tanhsl_‘l =
[ Qg8 tannsy | /[ B+ lupfsy o, tantp, | (A-b)



Furthermore, since v2 = ki - El and v2 = ES - kg » We may write
2 2 2 2
- F = -
kl = 52 k2
the real part of which yields @B, = - B, , (A-5)

Eliminating @, between (A-4) and (A-5) the result may be written

2
Bl[(ue/ul)02+ﬁl‘canhﬁl] / [02+(u2/u1)61tanhﬂl:‘l

= - 8 [ (ughiy)proytante, | /[ B+ upfhsy Jostents, | (a-6)

From the expression (A-6) it can be seen that if #_ 1is not real,

2

that is, if B # O, there exists no @, = O which satisfies (A-6) since

2

the left and right sides are always positive and negative respectively. Thus
roots of (16), on the sheet of interest, exist only for ", reals 1
It remains to show that there are nolroots for real Q2 > (ki - kg)e,

that is, for 62 =0 and1 a2 > (ki - kg)é'H- This can be seen by observing

. 2 2% . . . -
that Py =Q,> (kl k2) implies |v| > k, or £, is pure imaginary,
that is, @, =0, and £.H= iB,. Equation (16) becomes
T
tan i8) = -
or
- U B tanhB, = T (A-7)

Since the left and right sides of (A-7) are negative and positive
respectively, no roots exist.

Thus the only roots of (16) on the sheet of interest must satisfy

k,<v £ k, or -k <y = -k,. These are in fact the roots of the
m 1

2 m

characteristic equation in the classical Love Wave problem.

13
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