392 research outputs found

    Critical exponents and phase transition in gold nuclei fragmentation at energies 10.6 and 4.0 GeV/nucleon

    Full text link
    An attempt to extract critical exponents gamma, beta and tau from data on gold nuclei fragmentation due to interactions with nuclear emulsion at energies 4.0 A GeV and 10.6 A GeV is presented. Based on analysis of Campi's 2nd charge moments, two subsets of data at each energy are selected from the inclusive data, corresponding to 'liquid' and 'gas' phases. The extracted values of critical exponents from the selected data sets are in agreement with predictions of 'liquid-gas' model of phase transition.Comment: 21 pages, 15 figure

    Automatic method for the dermatological diagnosis of selected hand skin features in hyperspectral imaging

    Get PDF
    Introduction: Hyperspectral imaging has been used in dermatology for many years. The enrichment of hyperspectral imaging with image analysis broadens considerably the possibility of reproducible, quantitative evaluation of, for example, melanin and haemoglobin at any location in the patient's skin. The dedicated image analysis method proposed by the authors enables to automatically perform this type of measurement. Material and method: As part of the study, an algorithm for the analysis of hyperspectral images of healthy human skin acquired with the use of the Specim camera was proposed. Images were collected from the dorsal side of the hand. The frequency λ of the data obtained ranged from 397 to 1030 nm. A total of 4'000 2D images were obtained for 5 hyperspectral images. The method proposed in the paper uses dedicated image analysis based on human anthropometric data, mathematical morphology, median filtration, normalization and others. The algorithm was implemented in Matlab and C programs and is used in practice. Results: The algorithm of image analysis and processing proposed by the authors enables segmentation of any region of the hand (fingers, wrist) in a reproducible manner. In addition, the method allows to quantify the frequency content in different regions of interest which are determined automatically. Owing to this, it is possible to perform analyses for melanin in the frequency range λE∈(450,600) nm and for haemoglobin in the range λH∈(397,500) nm extending into the ultraviolet for the type of camera used. In these ranges, there are 189 images for melanin and 126 images for haemoglobin. For six areas of the left and right sides of the little finger (digitus minimus manus), the mean values of melanin and haemoglobin content were 17% and 15% respectively compared to the pattern. Conclusions: The obtained results confirmed the usefulness of the proposed new method of image analysis and processing in dermatology of the hand as it enables reproducible, quantitative assessment of any fragment of this body part. Each image in a sequence was analysed in this way in no more than 100 ms using Intel Core i5 CPU M460 @2.5 GHz 4 GB RAM

    On a possible photon origin of the most-energetic AGASA events

    Full text link
    In this work the ultra high energy cosmic ray events recorded by the AGASA experiment are analysed. With detailed simulations of the extensive air showers initiated by photons, the probabilities are determined of the photonic origin of the 6 AGASA events for which the muon densities were measured and the reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos, Greec

    Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers

    Full text link
    Atmospheric scattering of light emitted by an air shower not only attenuates direct fluorescence light from the shower, but also contributes to the observed shower light. So far only direct and singly-scattered Cherenkov photons have been taken into account in routine analyses of the observed optical image of air showers. In this paper a Monte Carlo method of evaluating the contribution of multiply scattered light to the optical air shower image is presented, as well as results of simulations and a parameterization of scattered light contribution to measured shower signal.Comment: 27 pages, 18 figures, accepted for publication in NIM

    Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field

    Full text link
    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. We present a new Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected energy in row 1 of Table 3, extended caption of Table

    Strongly damped nuclear collisions: zero or first sound ?

    Get PDF
    The relaxation of the collective quadrupole motion in the initial stage of a central heavy ion collision at beam energies Elab=5÷20E_{lab}=5\div20 AMeV is studied within a microscopic kinetic transport model. The damping rate is shown to be a non-monotonic function of E_{lab} for a given pair of colliding nuclei. This fact is interpreted as a manifestation of the zero-to-first sound transition in a finite nuclear system.Comment: 15 pages, 4 figure

    Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    Get PDF
    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy dependence of the preshower effect: photon conversion can start at smaller energies, but large conversion probabilitites (>90%) are reached for the whole sky at higher energies compared to the southern Auger site. We show how the complementary preshower features at the two sites can be used to search for ultra-high energy photons among cosmic rays. In particular, the different preshower characteristics at the northern Auger site may provide an elegant and unambiguous confirmation if a photon signal is detected at the southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix A replaced, accepted by Astroparticle Physic

    Simultaneous learning of instantaneous and time-delayed genetic interactions using novel information theoretic scoring technique

    Get PDF
    BACKGROUND: Understanding gene interactions is a fundamental question in systems biology. Currently, modeling of gene regulations using the Bayesian Network (BN) formalism assumes that genes interact either instantaneously or with a certain amount of time delay. However in reality, biological regulations, both instantaneous and time-delayed, occur simultaneously. A framework that can detect and model both these two types of interactions simultaneously would represent gene regulatory networks more accurately. RESULTS: In this paper, we introduce a framework based on the Bayesian Network (BN) formalism that can represent both instantaneous and time-delayed interactions between genes simultaneously. A novel scoring metric having firm mathematical underpinnings is also proposed that, unlike other recent methods, can score both interactions concurrently and takes into account the reality that multiple regulators can regulate a gene jointly, rather than in an isolated pair-wise manner. Further, a gene regulatory network (GRN) inference method employing an evolutionary search that makes use of the framework and the scoring metric is also presented. CONCLUSION: By taking into consideration the biological fact that both instantaneous and time-delayed regulations can occur among genes, our approach models gene interactions with greater accuracy. The proposed framework is efficient and can be used to infer gene networks having multiple orders of instantaneous and time-delayed regulations simultaneously. Experiments are carried out using three different synthetic networks (with three different mechanisms for generating synthetic data) as well as real life networks of Saccharomyces cerevisiae, E. coli and cyanobacteria gene expression data. The results show the effectiveness of our approach
    corecore