918 research outputs found
Induced Parity Violation in Odd Dimensions
One of the interesting features about field theories in odd dimensions is the
induction of parity violating terms and well-defined {\em finite} topological
actions via quantum loops if a fermion mass term is originally present and
conversely. Aspects of this issue are illustrated for electrodynamics in 2+1
and 4+1 dimensions. (3 uuencoded Postscript Files are appended at the end of
the TexFile.)Comment: 10 pages, UTAS-PHYS-94-0
Controls, Astrophysics, and Structures Experiment in Space (CASES)
As the size and performance requirements of future NASA and DOD spacecrafts and payloads tend to increase, the associated control systems that must effect these requirements tend to interact with the vehicle's structural dynamics. Some of the Control Structure Interaction (CSI) issues are being addressed in a flight experiment which is entitled CASES (Controls, Astrophysics and Structures Experiment in Space). As one of the first CSI flight experiments, the main emphasis for CASES is to provide a test bed for validating CSI developments and simultaneously, to pave the way for subsequent CSI experiments and science missions by establishing precedents for flight qualifying Large Space Structures (LSS)-class spacecraft. In addition, CASES provides an opportunity to obtain data bases for in-space controls and structures experiments and, at the same time, to gather hard x ray data from pertinent galactic sources
Definition of ground test for Large Space Structure (LSS) control verification
An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured
Ground test experiment for large space structures
In recent years a new body of control theory has been developed for the design of control systems for Large Space Structures (LSS). The problems of testing this theory on LSS hardware are aggravated by the expense and risk of actual in orbit tests. Ground tests on large space structures can provide a proving ground for candidate control systems, but such tests require a unique facility for their execution. The current development of such a facility at the NASA Marshall Space Flight Center (MSFC) is the subject of this report
NASA/MSFC ground experiment for large space structure control verification
Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that LSS test article has the characteristics common to all LSS
Cost effective development of a national test bed
For several years, the Marshall Space Flight Center has pursued the coordinated development of a Large Space Structures (LSS) National Test Bed for the investigation of numerous technical issues involved in the use of LSS in space. The origins of this development, the current status of the various test facilities and the plans laid down for the next five years' activities are described. Particular emphasis on the control and structural interaction issues has been paid so far; however, immediately emerging are user applications (such as the proposed pinhole occulter facility). In the immediate future, such emerging technologies as smart robots and multibody interactions will be studied. These areas are covered
An application of high authority/low authority control and positivity
Control Dynamics Company (CDy), in conjunction with NASA Marshall Space Flight Center (MSFC), has supported the U.S. Air Force Wright Aeronautical Laboratory (AFWAL) in conducting an investigation of the implementation of several DOD controls techniques. These techniques are to provide vibration suppression and precise attitude control for flexible space structures. AFWAL issued a contract to Control Dynamics to perform this work under the Active Control Technique Evaluation for Spacecraft (ACES) Program. The High Authority Control/Low Authority Control (HAC/LAC) and Positivity controls techniques, which were cultivated under the DARPA Active Control of Space Structures (ACOSS) Program, were applied to a structural model of the NASA/MSFC Ground Test Facility ACES configuration. The control systems design were accomplished and linear post-analyses of the closed-loop systems are provided. The control system designs take into account effects of sampling and delay in the control computer. Nonlinear simulation runs were used to verify the control system designs and implementations in the facility control computers. Finally, test results are given to verify operations of the control systems in the test facility
NASA-VCOSS dynamic test facility
The Large Space Structure Ground Test Facility under development at the NASA Marshall Space Flight Center in Huntsville, Alabama is described. The Ground Test Facility was established initially to test experimentally the control system to be used on the Solar Array flight Experiment. The structural dynamics of the selected test article were investigated, including the fidelity of the associated mathematical model. The facility must permit the investigation of structural dynamics phenomena and be able to evaluate candidate attitude control and vibration suppression techniques
Distributed control using linear momentum exchange devices
MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities
Emulating a flexible space structure: Modeling
Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work
- …
