168 research outputs found

    The Resting Potential and K+ Currents in Primary Human Articular Chondrocytes

    Get PDF
    Human transplant programs provide significant opportunities for detailed in vitro assessments of physiological properties of selected tissues and cell types. We present a semi-quantitative study of the fundamental electrophysiological/biophysical characteristics of human chondrocytes, focused on K+ transport mechanisms, and their ability to regulate to the resting membrane potential, Em. Patch clamp studies on these enzymatically isolated human chondrocytes reveal consistent expression of at least three functionally distinct K+ currents, as well as transient receptor potential (TRP) currents. The small size of these cells and their exceptionally low current densities present significant technical challenges for electrophysiological recordings. These limitations have been addressed by parallel development of a mathematical model of these K+ and TRP channel ion transfer mechanisms in an attempt to reveal their contributions to Em. In combination, these experimental results and simulations yield new insights into: (i) the ionic basis for Em and its expected range of values; (ii) modulation of Em by the unique articular joint extracellular milieu; (iii) some aspects of TRP channel mediated depolarization-secretion coupling; (iv) some of the essential biophysical principles that regulate K+ channel function in “chondrons.” The chondron denotes the chondrocyte and its immediate extracellular compartment. The presence of discrete localized surface charges and associated zeta potentials at the chondrocyte surface are regulated by cell metabolism and can modulate interactions of chondrocytes with the extracellular matrix. Semi-quantitative analysis of these factors in chondrocyte/chondron function may yield insights into progressive osteoarthritis

    po 259 inhibition of the hexosamine biosynthetic pathway by targeting pgm3 causes breast cancer growth arrest and apoptosis

    Get PDF
    Introduction Cancer aberrant N - and O -linked protein glycosylation, frequently resulting from an augmented flux through the Hexosamine Biosynthetic Pathway (HBP), play different roles in tumour progression. Recent studies reported an association between the tumorigenic potential, metastasis and chemoresistance of several type of breast cancer cells and tumours, among which the Triple Negative Breast Cancer (TNBC), and the alteration of their membrane glycans composition and ramification as well as of their level of protein O -Glc N Ac. However, the low specificity and toxicity of the existing HBP inhibitors prevented their use for cancer treatment. Material and methods In order to identify a novel inhibitor of HBP pathway and in particular of the PGM3 enzyme, we performed a virtual screening by using computational approaches. These approaches lead us to the identification of a lead compound. This compound, named FR054, has been synthetized and in vitro and in vivo tested by using several biophysical methods (NMR, LC/MS, HPLC) and biochemical assay (CETSA, ITDRF, FACS analysis) as well as tested in TNBC xenograft mice model. Results and discussions Here we report the preclinical evaluation of FR054, a novel inhibitor of the HBP enzyme PGM3, with a remarkable anti-breast cancer effect. In fact, FR054 induces in different breast cancer cells a dramatic decrease in cell proliferation and survival. In particular, in a model of Triple Negative Breast Cancer (TNBC) cells, MDA-MB-231, we show that these effects are correlated to FR054-dependent reduction of both N - and O -glycosylation level that cause also to a strong reduction of cancer cell adhesion and migration. Moreover we show that impaired survival of cancer cells upon FR054 treatment is associated with activation of the Unfolded Protein Response (UPR) and accumulation of intracellular ROS. Finally, we show that FR054 suppresses cancer growth in MDA-MB-231 xenograft mice. Conclusion Our data support the advantage of targeting HBP for therapeutic purpose and encourage further investigation about the use of this small-molecule as promising compound for breast cancer therapy

    An anatomy-based lumped parameter model of cerebrospinal venous circulation: can an extracranial anatomical change impact intracranial hemodynamics?

    Get PDF
    Background The relationship between extracranial venous system abnormalities and central nervous system disorders has been recently theorized. In this paper we delve into this hypothesis by modeling the venous drainage in brain and spinal column areas and simulating the intracranial flow changes due to extracranial morphological stenoses. Methods A lumped parameter model of the cerebro-spinal venous drainage was created based on anatomical knowledge and vessels diameters and lengths taken from literature. Each vein was modeled as a hydraulic resistance, calculated through Poiseuille’s law. The inputs of the model were arterial flow rates of the intracranial, vertebral and lumbar districts. The effects of the obstruction of the main venous outflows were simulated. A database comprising 112 Multiple Sclerosis patients (Male/Female = 42/70; median age ± standard deviation = 43.7 ± 10.5 years) was retrospectively analyzed. Results The flow rate of the main veins estimated with the model was similar to the measures of 21 healthy controls (Male/Female = 10/11; mean age ± standard deviation = 31 ± 11 years), obtained with a 1.5 T Magnetic Resonance scanner. The intracranial reflux topography predicted with the model in cases of internal jugular vein diameter reduction was similar to those observed in the patients with internal jugular vein obstacles. Conclusions The proposed model can predict physiological and pathological behaviors with good fidelity. Despite the simplifications introduced in cerebrospinal venous circulation modeling, the key anatomical feature of the lumped parameter model allowed for a detailed analysis of the consequences of extracranial venous impairments on intracranial pressure and hemodynamics

    Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation

    Get PDF
    Mitral regurgitation is a common mitral valve dysfunction which may lead to heart failure. Because of the rapid aging of the population, conventional surgical repair and replacement of the pathological valve are often unsuitable for about half of symptomatic patients, who are judged high-risk. Transcatheter valve implantation could represent an effective solution. However, currently available aortic valve devices are inapt for the mitral position. This paper presents the design, development and hydrodynamic assessment of a novel bi-leaflet mitral valve suitable for transcatheter implantation. The device consists of two leaflets and a sealing component made from bovine pericardium, supported by a self-expanding wireframe made from superelastic NiTi alloy. A parametric design procedure based on numerical simulations was implemented to identify design parameters providing acceptable stress levels and maximum coaptation area for the leaflets. The wireframe was designed to host the leaflets and was optimised numerically to minimise the stresses for crimping in an 8 mm sheath for percutaneous delivery. Prototypes were built and their hydrodynamic performances were tested on a cardiac pulse duplicator, in compliance with the ISO5840-3:2013 standard. The numerical results and hydrodynamic tests show the feasibility of the device to be adopted as a transcatheter valve implant for treating mitral regurgitation

    Osteopetrosis

    Get PDF
    Osteopetrosis ("marble bone disease") is a descriptive term that refers to a group of rare, heritable disorders of the skeleton characterized by increased bone density on radiographs. The overall incidence of these conditions is difficult to estimate but autosomal recessive osteopetrosis (ARO) has an incidence of 1 in 250,000 births, and autosomal dominant osteopetrosis (ADO) has an incidence of 1 in 20,000 births. Osteopetrotic conditions vary greatly in their presentation and severity, ranging from neonatal onset with life-threatening complications such as bone marrow failure (e.g. classic or "malignant" ARO), to the incidental finding of osteopetrosis on radiographs (e.g. osteopoikilosis). Classic ARO is characterised by fractures, short stature, compressive neuropathies, hypocalcaemia with attendant tetanic seizures, and life-threatening pancytopaenia. The presence of primary neurodegeneration, mental retardation, skin and immune system involvement, or renal tubular acidosis may point to rarer osteopetrosis variants, whereas onset of primarily skeletal manifestations such as fractures and osteomyelitis in late childhood or adolescence is typical of ADO. Osteopetrosis is caused by failure of osteoclast development or function and mutations in at least 10 genes have been identified as causative in humans, accounting for 70% of all cases. These conditions can be inherited as autosomal recessive, dominant or X-linked traits with the most severe forms being autosomal recessive. Diagnosis is largely based on clinical and radiographic evaluation, confirmed by gene testing where applicable, and paves the way to understanding natural history, specific treatment where available, counselling regarding recurrence risks, and prenatal diagnosis in severe forms. Treatment of osteopetrotic conditions is largely symptomatic, although haematopoietic stem cell transplantation is employed for the most severe forms associated with bone marrow failure and currently offers the best chance of longer-term survival in this group. The severe infantile forms of osteopetrosis are associated with diminished life expectancy, with most untreated children dying in the first decade as a complication of bone marrow suppression. Life expectancy in the adult onset forms is normal. It is anticipated that further understanding of the molecular pathogenesis of these conditions will reveal new targets for pharmacotherapy
    corecore