528 research outputs found
Diquark and Pion Condensation in Random Matrix Models for two-color QCD
We introduce a random matrix model with the symmetries of QCD with two colors
at nonzero isospin and baryon chemical potentials and temperature. We analyze
its phase diagram and find phases with condensation of pion and diquark states
in addition to the phases with spontaneously broken chiral symmetries. In the
limit of small chemical potentials and quark masses, we reproduce the mean
field results obtained from chiral Lagrangians. As in the case of QCD with
three colors, the presence of two chemical potentials breaks the flavor
symmetry and leads to phases that are characterized by different behaviors of
the chiral condensates for each flavor. In particular, the phase diagram we
obtain is similar to QCD with three colors and three flavors of quarks of equal
masses at zero baryon chemical potential and nonzero isospin and strange
chemical potentials. A tricritical point of the superfluid transitions found in
lattice calculations and from an analysis in terms of chiral Lagrangians does
not appear in the random matrix model. Remarkably, at fixed isospin chemical
potential, for the regions outside of the superfluid phases, the phase diagram
in the temperature - baryon chemical potential plane for two colors and three
colors are qualitatively the same.Comment: 19 pages, 7 figures, RevTeX
Use of 2G coated conductors for efficient shielding of DC magnetic fields
This paper reports the results of an experimental investigation of the
performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO)
coated conductors. Since effective screening of the axial DC magnetic field
requires the unimpeded flow of an azimuthal persistent current, we demonstrate
a configuration of a screening shell made out of standard YBCO coated conductor
capable to accomplish that. The screen allows the persistent current to flow in
the predominantly azimuthal direction at a temperature of 77 K. The persistent
screen, incorporating a single layer of superconducting film, can attenuate an
external magnetic field of up to 5 mT by more than an order of magnitude. For
comparison purposes, another type of screen which incorporates low critical
temperature quasi-persistent joints was also built. The shielding technique we
describe here appears to be especially promising for the realization of large
scale high-Tc superconducting screens.Comment: 8 pages, 3 figure
Classical analogy for the deflection of flux avalanches by a metallic layer
Sudden avalanches of magnetic flux bursting into a superconducting sample
undergo deflections of their trajectories when encountering a conductive layer
deposited on top of the superconductor. Remarkably, in some cases flux is
totally excluded from the area covered by the conductive layer. We present a
simple classical model that accounts for this behaviour and considers a
magnetic monopole approaching a semi-infinite conductive plane. This model
suggests that magnetic braking is an important mechanism responsible for
avalanche deflection.Comment: 14 pages, 5 figure
Random matrix study of the phase structure of QCD with two colors
We apply a random matrix model to the study of the phase diagram of QCD with two colors, two flavors, and a small quark mass. Although the effects of temperature are only included schematically, this model reproduces most of the ground state predictions of chiral perturbation theory and also gives a qualitative picture of the phase diagram at all temperatures. It leads, however, to an unphysical behavior of the chiral order parameter and the baryon density in vacuum and does not support diquark condensation at arbitrarily high densities. A better treatment of temperature dependence leads to correct vacuum and small temperature properties. We compare our results at both high and low densities with the results of microscopic calculations using the Nambu-Jona-Lasinio model and discuss the effects of large momentum scales on the variations of condensation fields with chemical potential
Strange quark matter: mapping QCD lattice results to finite baryon density by a quasi-particle model
A quasi-particle model is presented which describes QCD lattice results for
the 0, 2 and 4 quark-flavor equation of state. The results are mapped to finite
baryo-chemical potentials. As an application of the model we make a prediction
of deconfined matter with appropriate inclusion of strange quarks and consider
pure quark stars.Comment: invited talk at Strangeness 2000, Berkeley; prepared version for the
proceedings, 5 page
Thermodynamics of the \phi^4 theory in tadpole approximation
Relying on the Luttinger-Ward theorem we derive a thermodynamically
selfconsistent and scale independent approximation of the thermodynamic
potential for the scalar theory in the tadpole approximation. The
resulting thermodynamic potential as a function of the temperature is similar
to the one of the recently proposed screened perturbation theory.Comment: 6 pages, including 1 eps figur
Diquark Condensation at Nonzero Chemical Potential and Temperature
SU(2) lattice gauge theory with four flavors of quarks is studied at nonzero
chemical potential and temperature by computer simulation and
Effective Lagrangian techniques. Simulations are done on ,
and lattices and the diquark condensate, chiral order
parameter, Wilson line, fermion energy and number densities are measured.
Simulations at a fixed, nonzero quark mass provide evidence for a tricritical
point in the - plane associated with diquark condensation. For low ,
increasing takes the system through a line of second order phase
transitions to a diquark condensed phase. Increasing at high , the
system passes through a line of first order transitions from the diquark phase
to the quark-gluon plasma phase. Using Effective Lagrangians we estimate the
position of the tricritical point and ascribe its existence to trilinear
couplings that increase with and .Comment: 18 pages revtex, 11 figures postscrip
Random matrix model for chiral symmetry breaking and color superconductivity in QCD at finite density
We consider a random matrix model which describes the competition between
chiral symmetry breaking and the formation of quark Cooper pairs in QCD at
finite density. We study the evolution of the phase structure in temperature
and chemical potential with variations of the strength of the interaction in
the quark-quark channel and demonstrate that the phase diagram can realize a
total of six different topologies. A vector interaction representing
single-gluon exchange reproduces a topology commonly encountered in previous
QCD models, in which a low-density chiral broken phase is separated from a
high-density diquark phase by a first-order line. The other five topologies
either do not possess a diquark phase or display a new phase and new critical
points. Since these five cases require large variations of the coupling
constants away from the values expected for a vector interaction, we conclude
that the phase diagram of finite density QCD has the topology suggested by
single-gluon exchange and that this topology is robust.Comment: ReVTeX, 22 pages, 14 figures. An animated gif movie showing the
evolution of the phase diagram with the coupling constants can be viewed at
http://www.nbi.dk/~vdheyden/QCDpd.htm
The QCD Phase Diagram at Nonzero Temperature, Baryon and Isospin Chemical Potentials in Random Matrix Theory
We introduce a random matrix model with the symmetries of QCD at finite
temperature and chemical potentials for baryon number and isospin. We analyze
the phase diagram of this model in the chemical potential plane for different
temperatures and quark masses. We find a rich phase structure with five
different phases separated by both first and second order lines. The phases are
characterized by the pion condensate and the chiral condensate for each of the
flavors. In agreement with lattice simulations, we find that in the phase with
zero pion condensate the critical temperature depends in the same way on the
baryon number chemical potential and on the isospin chemical potential. At
nonzero quark mass, we remarkably find that the critical end point at nonzero
temperature and baryon chemical potential is split in two by an arbitrarily
small isospin chemical potential. As a consequence, there are two crossovers
that separate the hadronic phase from the quark-gluon plasma phase at high
temperature. Detailed analytical results are obtained at zero temperature and
in the chiral limit.Comment: 13 pages, 5 figures, REVTeX
- …
