2,123 research outputs found
Mode-locking of incommensurate phase by quantum zero point energy in the Frenkel-Kontorova model
In this paper, it is shown that a configuration modulated system described by
the Frenkel-Kontorova model can be locked at an incommensurate phase when the
quantum zero point energy is taken into account. It is also found that the
specific heat for an incommensurate phase shows different parameter-dependence
in sliding phase and pinning phase. These findings provide a possible way for
experimentalists to verify the phase transition by breaking of analyticity.Comment: 6 pages in Europhys style, 3 eps figure
Ground state wavefunction of the quantum Frenkel-Kontorova model
The wavefunction of an incommensurate ground state for a one-dimensional
discrete sine-Gordon model -- the Frenkel-Kontorova (FK) model -- at zero
temperature is calculated by the quantum Monte Carlo method. It is found that
the ground state wavefunction crosses over from an extended state to a
localized state when the coupling constant exceeds a certain critical value.
So, although the quantum fluctuation has smeared out the breaking of
analyticity transition as observed in the classical case, the remnant of this
transition is still discernible in the quantum regime.Comment: 5 Europhys pages, 3 EPS figures, accepted for publication in
Europhys. Letter
Oscillatory fracture path in thin elastic sheet
We report a novel mode of oscillatory crack propagation when a cutting tip is
driven through a thin brittle polymer film. The phenomenon is so robust that it
can easily be reproduced at hand (using CD packaging material for example).
Careful experiments show that the amplitude and wavelength of the oscillatory
crack path scale lineraly with the width of the cutting tip over a wide range
of lenghtscales but are independant of the width of thje sheet and the cutting
speed. A simple geometric model is presented, which provides a simple but
thorough interpretation of the oscillations.Comment: 6 pages, submitted to Comptes Rendus Academie des Sciences. Movies
available at http://www.lmm.jussieu.fr/platefractur
Renormalization and Quantum Scaling of Frenkel-Kontorova Models
We generalise the classical Transition by Breaking of Analyticity for the
class of Frenkel-Kontorova models studied by Aubry and others to non-zero
Planck's constant and temperature. This analysis is based on the study of a
renormalization operator for the case of irrational mean spacing using
Feynman's functional integral approach. We show how existing classical results
extend to the quantum regime. In particular we extend MacKay's renormalization
approach for the classical statistical mechanics to deduce scaling of low
frequency effects and quantum effects. Our approach extends the phenomenon of
hierarchical melting studied by Vallet, Schilling and Aubry to the quantum
regime.Comment: 14 pages, 1 figure, submitted to J.Stat.Phy
Training a perceptron in a discrete weight space
On-line and batch learning of a perceptron in a discrete weight space, where
each weight can take different values, are examined analytically and
numerically. The learning algorithm is based on the training of the continuous
perceptron and prediction following the clipped weights. The learning is
described by a new set of order parameters, composed of the overlaps between
the teacher and the continuous/clipped students. Different scenarios are
examined among them on-line learning with discrete/continuous transfer
functions and off-line Hebb learning. The generalization error of the clipped
weights decays asymptotically as / in the case of on-line learning with binary/continuous activation
functions, respectively, where is the number of examples divided by N,
the size of the input vector and is a positive constant that decays
linearly with 1/L. For finite and , a perfect agreement between the
discrete student and the teacher is obtained for . A crossover to the generalization error ,
characterized continuous weights with binary output, is obtained for synaptic
depth .Comment: 10 pages, 5 figs., submitted to PR
External and internal noise surveys of London primary schools
Internal and external noise surveys have been carried out around schools in London, UK, to provide information on typical levels and sources to which children are exposed while at school. Noise levels were measured outside 142 schools, in areas away from flightpaths into major airports. 86% of the schools surveyed were exposed to noise from road traffic, the average external noise level outside a school being 57 dB LAeq. Detailed internal noise surveys have been carried out in 140 classrooms in 16 schools, together with classroom observations. It was found that noise levels inside classrooms depend upon the activities in which the children are engaged, with a difference of 20 dB LAeq between the 'quietest' and 'noisiest' activities. The average background noise level in classrooms exceeds the level recommended in current standards. The number of children in the classroom was found to affect noise levels. External noise influenced internal noise levels only when children were engaged in the quietest classroom activities. The effects of the age of the school buildings and types of window upon internal noise were examined but results were inconclusive
Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light
We show how a medium, under the influece of a coherent control field which is
resonant or close to resonance to an appropriate atomic transition, can lead to
very strong asymmetries in the propagation of unpolarized light when the
direction of the magnetic field is reversed. We show how EIT can be used to
mimic effects occuring in natural systems and that EIT can produce very large
asymmetries as we use electric dipole allowed transitions. Using density matrix
calculations we present results for the breakdown of the magnetic field
reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys.
Rev.
Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model
The osteogenic and angiogenic responses of organisms to the ionic products of degradation of bioactive glasses (BGs) are being intensively investigated. The promotion of angiogenesis by copper (Cu) has been known for more than three decades. This element can be incorporated to delivery carriers, such as BGs, and the materials used in biological assays. In this work, Cu-containing mesoporous bioactive glass (MBG) in the SiO2-CaO-P2O5 compositional system was prepared incorporating 5% mol Cu (MBG-5Cu) by replacement of the corresponding amount of Ca. The biological effects of the ionic products of MBG
biodegradation were evaluated on a well-known endothelial cell line, the bovine aorta endothelial cells (BAEC), as well as in an in vivo zebrafish (Danio rerio) embryo assay. The results suggest that ionic products of both MBG (Cu free) and MBG-5Cu materials promote angiogenesis. In vitro cell cultures show that the ionic dissolution products of these materials are not toxic and promote BAEC viability and migration.
In addition, the in vivo assay indicates that both exposition and microinjection of zebrafish embryos with Cu free MBG material increase vessel number and thickness of the subintestinal venous plexus (SIVP), whereas assays using MBG-5Cu enhance this effect.The authors gratefully acknowledge the financial support provided by the Andalusian Ministry of Economy, Science and Innovation
(Proyectos Excelencia Grants no. P10-CTS-6681 and no. P12-CTS-1507) and Spanish Ministry of Economy and Competitivity
(BIO2014-56092-R). LBRS acknowledges the CONACYT-Mexico Fellowship PhD Program
Fractal Spin Glass Properties of Low Energy Configurations in the Frenkel-Kontorova chain
We study numerically and analytically the classical one-dimensional
Frenkel-Kontorova chain in the regime of pinned phase characterized by phonon
gap. Our results show the existence of exponentially many static equilibrium
configurations which are exponentially close to the energy of the ground state.
The energies of these configurations form a fractal quasi-degenerate band
structure which is described on the basis of elementary excitations. Contrary
to the ground state, the configurations inside these bands are disordered.Comment: revtex, 9 pages, 9 figure
- …
