229 research outputs found

    The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia

    Get PDF
    AbstractRecent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization – IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate

    Observation of Anomalous Internal Pair Creation in 8^8Be: A Possible Signature of a Light, Neutral Boson

    Full text link
    Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state (Jπ=1+J^\pi=1^+, T=1T=1) →\rightarrow ground state (Jπ=0+J^\pi=0^+, T=0T=0) and the isoscalar magnetic dipole 18.15 MeV (Jπ=1+J^\pi=1^+, T=0T=0) state →\rightarrow ground state transitions in 8^{8}Be. Significant deviation from the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of >5σ> 5\sigma. This observation might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70±0.35\pm0.35 (stat)±0.5\pm 0.5 (sys) MeV/c2/c^2 and Jπ=1+J^\pi = 1^+ was created.Comment: 5 pages, 5 figure

    Post-thaw development of in vitro produced buffalo embryos cryopreserved by cytoskeletal stabilization and vitrification

    Get PDF
    The present study was conducted to examine post-thaw in vitro developmental competence of buffalo embryos cryopreserved by cytoskeletal stabilization and vitrification. In vitro produced embryos were incubated with a medium containing cytochalasin-b (cyto-b) in a CO2 incubator for 40 min for microfilament stabilization and were cryopreserved by a two-step vitrification method at 24℃ in the presence of cyto-b. Initially, the embryos were exposed to 10% ethylene glycol (EG) and 10% dimethylsulfoxide (DMSO) in a base medium for 4 min. After the initial exposure, the embryos were transferred to a 7 µl drop of 25% EG and 25% DMSO in base medium and 0.3 M sucrose for 45 sec. After warming, the embryos were cultured in vitro for 72 h. The post-thaw in vitro developmental competence of the cyto-b-treated embryos did not differ significantly from those vitrified without cyto-b treatment. The hatching rates of morulae vitrified without cyto-b treatment was significantly lower than the non-vitrified control. However, the hatching rate of cyto-b-treated vitrified morulae did not differ significantly from the non-vitrified control. This study demonstrates that freezing of buffalo embryos by cytoskeletal stabilization and vitrification is a reliable method for long-term preservation

    A prospective cohort study to assess seroprevalence, incidence, knowledge, attitudes and practices, willingness to pay for vaccine and related risk factors in dengue in a high incidence setting

    Get PDF
    Abstract Background Dengue is one of the most important vector-borne diseases in the world, causing significant morbidity and economic impact. In Colombia, dengue is a major public health problem. Departments of La Guajira, Cesar and Magdalena are dengue endemic areas. The objective of this research is to determine the seroprevalence and the incidence of dengue virus infection in the participating municipalities from these Departments, and also establish the association between individual and housing factors and vector indices with seroprevalence and incidence. We will also assess knowledge, attitudes and practices, and willingness-to-pay for dengue vaccine. Methods A cohort study will be assembled with a clustered multistage sampling in 11 endemic municipalities. Approximately 1000 homes will be visited to enroll people older than one year who living in these areas, who will be followed for 1 year. Dengue virus infections will be evaluated using IgG indirect ELISA and IgM and IgG capture ELISA. Additionally, vector indices will be measured, and adult mosquitoes will be captured with aspirators. Ovitraps will be used for continuous estimation of vector density. Discussion This research will generate necessary knowledge to design and implement strategies with a multidimensional approach that reduce dengue morbidity and mortality in La Guajira and other departments from Colombian Caribbean

    Promising System for Selecting Healthy In Vitro–Fertilized Embryos in Cattle

    Get PDF
    Conventionally, in vitro–fertilized (IVF) bovine embryos are morphologically evaluated at the time of embryo transfer to select those that are likely to establish a pregnancy. This method is, however, subjective and results in unreliable selection. Here we describe a novel selection system for IVF bovine blastocysts for transfer that traces the development of individual embryos with time-lapse cinematography in our developed microwell culture dish and analyzes embryonic metabolism. The system can noninvasively identify prognostic factors that reflect not only blastocyst qualities detected with histological, cytogenetic, and molecular analysis but also viability after transfer. By assessing a combination of identified prognostic factors—(i) timing of the first cleavage; (ii) number of blastomeres at the end of the first cleavage; (iii) presence or absence of multiple fragments at the end of the first cleavage; (iv) number of blastomeres at the onset of lag-phase, which results in temporary developmental arrest during the fourth or fifth cell cycle; and (v) oxygen consumption at the blastocyst stage—pregnancy success could be accurately predicted (78.9%). The conventional method or individual prognostic factors could not accurately predict pregnancy. No newborn calves showed neonatal overgrowth or death. Our results demonstrate that these five predictors and our system could provide objective and reliable selection of healthy IVF bovine embryos
    • …
    corecore