261 research outputs found
On-site residence time in a driven diffusive system: violation and recovery of mean-field
We investigate simple one-dimensional driven diffusive systems with open
boundaries. We are interested in the average on-site residence time defined as
the time a particle spends on a given site before moving on to the next site.
Using mean-field theory, we obtain an analytical expression for the on-site
residence times. By comparing the analytic predictions with numerics, we
demonstrate that the mean-field significantly underestimates the residence time
due to the neglect of time correlations in the local density of particles. The
temporal correlations are particularly long-lived near the average shock
position, where the density changes abruptly from low to high. By using Domain
wall theory (DWT), we obtain highly accurate estimates of the residence time
for different boundary conditions. We apply our analytical approach to
residence times in a totally asymmetric exclusion process (TASEP), TASEP
coupled to Langmuir kinetics (TASEP + LK), and TASEP coupled to mutually
interactive LK (TASEP + MILK). The high accuracy of our predictions is verified
by comparing these with detailed Monte Carlo simulations
Metallic superhydrophobic surfaces via thermal sensitization
Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications
Copper-enriched diamond-like carbon coatings promote regeneration at the bone�implant interface
There have been several attempts to design innovative biomaterials as surface coatings to enhance the biological performance of biomedical implants. The objective of this study was to design multifunctional Cu/a-C:H thin coating depositing on the Ti-6Al-4V alloy (TC4) via magnetron sputtering in the presence of Ar and CH4 for applications in bone implants. Moreover, the impact of Cu amount and sp2/sp3 ratio on the interior stress, corrosion behavior, mechanical properties, and tribological performance and biocompatibility of the resulting biomaterial was discussed. X-ray photoelectron spectroscopy (XPS) revealed that the sp2/sp3 portion of the coating was enhanced for samples having higher Cu contents. The intensity of the interior stress of the Cu/a-C:H thin bio-films decreased by increase of Cu content as well as the sp2/sp3 ratio. By contrast, the values of Young's modulus, the H3/E2 ratio, and hardness exhibited no significant difference with enhancing Cu content and sp2/sp3 ratio. However, there was an optimum Cu content (36.8 wt.) and sp2/sp3 ratio (4.7) that it is feasible to get Cu/a-C:H coating with higher hardness and tribological properties. Electrochemical impedance spectroscopy test results depicted significant improvement of Ti-6Al-4V alloy corrosion resistance by deposition of Cu/a-C:H thin coating at an optimum Ar/CH4 ratio. Furthermore, Cu/a-C:H thin coating with higher Cu contents showed better antibacterial properties and higher angiogenesis and osteogenesis activities. The coated samples inhibited the growth of bacteria as compared to the uncoated sample (p < 0.05). In addition, such coating composition can stimulate angiogenesis, osteogenesis and control host response, thereby increasing the success rate of implants. Moreover, Cu/a-C:H thin films encouraged development of blood vessels on the surface of titanium alloy when the density of grown blood vessels was increased with enhancing the Cu amount of the films. It is speculated that such coating can be a promising candidate for enhancing the osseointegration features. © 2020 Biomedical engineering; Materials science; Biomimetics; Tissue engineering; Coatings; Angiogenesis, Osteogenesis corrosion resistance; Copper; Hydrogenated amorphous carbon © 202
Result of randomized control trial to increase breast health awareness among young females in Malaysia
The validity of self-reported cancer screening history and the role of social disadvantage in Ontario, Canada
Perceived barriers to healthcare for persons living in poverty in Quebec, Canada: the EQUIhealThY project
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation
The global fatty liver disease Sustainable Development Goal country score for 195 countries and territories
Background and aims: Fatty liver disease is highly prevalent, resulting in overarching wellbeing and economic costs. Addressing it requires comprehensive and coordinated multisectoral action. We developed a fatty liver disease Sustainable Development Goal (SDG) country score to provide insights into country-level preparedness to address fatty liver disease through a whole-of-society lens. Approach and results: We developed 2 fatty liver disease-SDG score sets. The first included 6 indicators (child wasting, child overweight, noncommunicable disease mortality, a universal health coverage service coverage index, health worker density, and education attainment), covering 195 countries and territories between 1990 and 2017. The second included the aforementioned indicators plus an urban green space indicator, covering 60 countries and territories for which 2017 data were available. To develop the fatty liver disease-SDG score, indicators were categorized as "positive" or "negative" and scaled from 0 to 100. Higher scores indicate better preparedness levels. Fatty liver disease-SDG scores varied between countries and territories (n = 195), from 14.6 (95% uncertainty interval: 8.9 to 19.4) in Niger to 93.5 (91.6 to 95.3) in Japan; 18 countries and territories scored > 85. Regionally, the high-income super-region had the highest score at 88.8 (87.3 to 90.1) in 2017, whereas south Asia had the lowest score at 44.1 (42.4 to 45.8). Between 1990 and 2017, the fatty liver disease-SDG score increased in all super-regions, with the greatest increase in south Asia, but decreased in 8 countries and territories. Conclusions: The fatty liver disease-SDG score provides a strategic advocacy tool at the national and global levels for the liver health field and noncommunicable disease advocates, highlighting the multisectoral collaborations needed to address fatty liver disease, and noncommunicable diseases overall
Interactions between the fluid and an isolation tool in a pipe: laboratory experiments and numerical simulation
Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019
BACKGROUND: The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. METHODS: We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. FINDINGS: In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of −0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = −0.41), inflammatory bowel disease (AAPC = −0.72), multiple sclerosis (AAPC = −0.26), psoriasis (AAPC = −0.77), and atopic dermatitis (AAPC = −0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. INTERPRETATION: The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. FUNDING: The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38)
- …
