155 research outputs found

    Validation of a chloroquine-induced cell death mechanism for clinical use against malaria

    Get PDF
    An alternative antimalarial pathway of an ‘outdated’ drug, chloroquine (CQ), may facilitate its return to the shrinking list of effective antimalarials. Conventionally, CQ is believed to interfere with hemozoin formation at nanomolar concentrations, but resistant parasites are able to efflux this drug from the digestive vacuole (DV). However, we show that the DV membrane of both resistant and sensitive laboratory and field parasites is compromised after exposure to micromolar concentrations of CQ, leading to an extrusion of DV proteases. Furthermore, only a short period of exposure is required to compromise the viability of late-stage parasites. To study the feasibility of this strategy, mice malaria models were used to demonstrate that high doses of CQ also triggered DV permeabilization in vivo and reduced reinvasion efficiency. We suggest that a time-release oral formulation of CQ may sustain elevated blood CQ levels sufficiently to clear even CQ-resistant parasites

    Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    Get PDF
    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine

    Absence of association between pyronaridine in vitro responses and polymorphisms in genes involved in quinoline resistance in Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present work was to assess the <it>in vitro </it>cross-resistance of pyronaridine with other quinoline drugs, artesunate and several other commonly used anti-malarials and to evaluate whether decreased susceptibility to pyronaridine could be associated with genetic polymorphisms in genes involved in reduced quinoline susceptibility, such as <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfmrp </it>and <it>pfnhe</it>.</p> <p>Methods</p> <p>The <it>in vitro </it>chemosusceptibility profiles of 23 strains of <it>Plasmodium falciparum </it>were analysed by the standard 42-hour <sup>3</sup>H-hypoxanthine uptake inhibition method for pyronaridine, artesunate, chloroquine, monodesethylamodiaquine, quinine, mefloquine, lumefantrine, atovaquone, pyrimethamine and doxycycline. Genotypes were assessed for <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfnhe-1 </it>and <it>pfmrp </it>genes.</p> <p>Results</p> <p>The IC<sub>50 </sub>values for pyronaridine ranged from 15 to 49 nM (geometric mean = 23.1 nM). A significant positive correlation was found between responses to pyronaridine and responses to artesunate (<it>r<sup>2 </sup></it>= 0.20; <it>P </it>= 0.0317) but too low to suggest cross-resistance. No significant correlation was found between pyronaridine IC<sub>50 </sub>and responses to other anti-malarials. Significant associations were not found between pyronaridine IC<sub>50 </sub>and polymorphisms in <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfmrp </it>or <it>pfnhe-1</it>.</p> <p>Conclusion</p> <p>There was an absence of cross-resistance between pyronaridine and quinolines, and the IC<sub>50 </sub>values for pyronaridine were found to be unrelated to mutations in the transport protein genes <it>pfcrt</it>, <it>pfmdr1</it>, <it>pfmrp </it>or <it>pfnhe-1</it>, known to be involved in quinoline resistance. These results confirm the interest and the efficacy of the use of a combination of pyronaridine and artesunate in areas in which parasites are resistant to quinolines.</p

    Mitochondrial simple sequenze repeats and 12s – rRNA gene reveal two distinct lineages of Crocidura russula (Mammalia, Sorcidae)

    Get PDF
    A short segment (135 bp) of the control region and a partial sequence (394 bp) of the 12S-rRNA gene in the mitochondrial DNA of Crocidura russula were analyzed in order to test a previous hypothesis regarding the presence of a gene flow disruption in northern Africa. This breakpoint would have separated northeast-African C. russula populations from the European (plus the northwest-African) populations. The analysis was carried out on specimens from Tunisia (C. r. cf agilis), Sardinia (C. r. ichnusae), and Pantelleria (C. r. cossyrensis), and on C. r. russula from Spain and Belgium. Two C. russula lineages were identified; they both shared R2 tandem repeated motifs of the same length (12 bp), but not the same primary structure. These simple sequence repeats were present in 12–23 copies in the right domain of the control region. Within the northeast-African populations, a polymorphism of repeat variants, not yet found in Europe, was recorded. A neighbor-join tree, which was built by sequences of the conserved 12S-rRNA gene, separated the two sister groups; it permitted us to date a divergence time of 0.5Myr. Our data discriminated two different mitochondrial lineages in accordance with the previous morphological and karyological data. Ecoclimatic barriers formed during the Middle Pleistocene broke the range of ancestral species in the Eastern Algeria (Kabile Mountains), leading to two genetically separate and modern lineages. The northeast-African lineage can today be located in Tunisia, Pantelleria, and Sardinia. The northwest- African lineage (Morocco and West Algeria), reaching Spain by anthropogenic introduction, spread over north Europe in modern times. The Palaearctic C. russula species is monophyletic, but a taxonomical revision (ie, to provide a full species rank for the northeast taxa and to put in synonymy some insular taxa) is required

    The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization

    Get PDF
    The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and preventative measures against enteric pathogens

    Quinine Treatment Selects the pfnhe-1 ms4760-1 Polymorphism in Malian Patients with Falciparum Malaria

    Get PDF
    Background. The mechanism of Plasmodium falciparum resistance to quinine is not known. In vitro quantitative trait loci mapping suggests involvement of a predicted P. falciparum sodium-hydrogen exchanger (pfnhe-1) on chromosome 13. Methods. We conducted prospective quinine efficacy studies in 2 villages, Kolle and Faladie, Mali. Cases of clinical malaria requiring intravenous therapy were treated with standard doses of quinine and followed for 28 days. Treatment outcomes were classified using modified World Health Organization protocols. Molecular markers of parasite polymorphisms were used to distinguish recrudescent parasites from new infections. The prevalence of pfnhe-1 ms4760-1 among parasites before versus after quinine treatment was determined by direct sequencing. Results. Overall, 163 patients were enrolled and successfully followed. Without molecular correction, the mean adequate clinical and parasitological response (ACPR) was 50.3% (n = 163). After polymerase chain reaction correction to account for new infections, the corrected ACPR was 100%. The prevalence of ms4760-1 increased significantly, from 26.2% (n = 107) before quinine treatment to 46.3% (n = 54) after therapy (P = .01). In a control sulfadoxine-pyrimethamine study, the prevalence of ms4760-1 was similar before and after treatment. Conclusions. This study supports a role for pfnhe-1 in decreased susceptibility of P. falciparum to quinine in the field.Howard Hughes Medical Institute [55005502]; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; European and Developing Countries Clinical Trials Partnership [EDCTP IP_07_31060_002]info:eu-repo/semantics/publishedVersio

    The effect of dose on the antimalarial efficacy of artemether-lumefantrine: a systematic review and pooled analysis of individual patient data

    Get PDF
    Background: Artemether-lumefantrine is the most widely used artemisinin-based combination therapy for malaria, although treatment failures occur in some regions. We investigated the effect of dosing strategy on efficacy in a pooled analysis from trials done in a wide range of malaria-endemic settings. Methods: We searched PubMed for clinical trials that enrolled and treated patients with artemether-lumefantrine and were published from 1960 to December, 2012. We merged individual patient data from these trials by use of standardised methods. The primary endpoint was the PCR-adjusted risk of Plasmodium falciparum recrudescence by day 28. Secondary endpoints consisted of the PCR-adjusted risk of P falciparum recurrence by day 42, PCR-unadjusted risk of P falciparum recurrence by day 42, early parasite clearance, and gametocyte carriage. Risk factors for PCR-adjusted recrudescence were identified using Cox's regression model with frailty shared across the study sites. Findings: We included 61 studies done between January, 1998, and December, 2012, and included 14 327 patients in our analyses. The PCR-adjusted therapeutic efficacy was 97·6% (95% CI 97·4-97·9) at day 28 and 96·0% (95·6-96·5) at day 42. After controlling for age and parasitaemia, patients prescribed a higher dose of artemether had a lower risk of having parasitaemia on day 1 (adjusted odds ratio [OR] 0·92, 95% CI 0·86-0·99 for every 1 mg/kg increase in daily artemether dose; p=0·024), but not on day 2 (p=0·69) or day 3 (0·087). In Asia, children weighing 10-15 kg who received a total lumefantrine dose less than 60 mg/kg had the lowest PCR-adjusted efficacy (91·7%, 95% CI 86·5-96·9). In Africa, the risk of treatment failure was greatest in malnourished children aged 1-3 years (PCR-adjusted efficacy 94·3%, 95% CI 92·3-96·3). A higher artemether dose was associated with a lower gametocyte presence within 14 days of treatment (adjusted OR 0·92, 95% CI 0·85-0·99; p=0·037 for every 1 mg/kg increase in total artemether dose). Interpretation: The recommended dose of artemether-lumefantrine provides reliable efficacy in most patients with uncomplicated malaria. However, therapeutic efficacy was lowest in young children from Asia and young underweight children from Africa; a higher dose regimen should be assessed in these groups. Funding: Bill and Melinda Gates Foundation

    The Local Origin of the Tibetan Pig and Additional Insights into the Origin of Asian Pigs

    Get PDF
    BACKGROUND: The domestic pig currently indigenous to the Tibetan highlands is supposed to have been introduced during a continuous period of colonization by the ancestors of modern Tibetans. However, there is no direct genetic evidence of either the local origin or exotic migration of the Tibetan pig. METHODS AND FINDINGS: We analyzed mtDNA hypervariable segment I (HVI) variation of 218 individuals from seven Tibetan pig populations and 1,737 reported mtDNA sequences from domestic pigs and wild boars across Asia. The Bayesian consensus tree revealed a main haplogroup M and twelve minor haplogroups, which suggested a large number of small scale in situ domestication episodes. In particular, haplogroups D1 and D6 represented two highly divergent lineages in the Tibetan highlands and Island Southeastern Asia, respectively. Network analysis of haplogroup M further revealed one main subhaplogroup M1 and two minor subhaplogroups M2 and M3. Intriguingly, M2 was mainly distributed in Southeastern Asia, suggesting for a local origin. Similar with haplogroup D6, M3 was mainly restricted in Island Southeastern Asia. This pattern suggested that Island Southeastern Asia, but not Southeastern Asia, might be the center of domestication of the so-called Pacific clade (M3 and D6 here) described in previous studies. Diversity gradient analysis of major subhaplogroup M1 suggested three local origins in Southeastern Asia, the middle and downstream regions of the Yangtze River, and the Tibetan highlands, respectively. CONCLUSIONS: We identified two new origin centers for domestic pigs in the Tibetan highlands and in the Island Southeastern Asian region

    High frequency of Plasmodium falciparum chloroquine resistance marker (pfcrt T76 mutation) in Yemen: An urgent need to re-examine malaria drug policy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria remains a significant health problem in Yemen with <it>Plasmodium falciparum </it>being the predominant species which is responsible for 90% of the malaria cases. Despite serious concerns regarding increasing drug resistance, chloroquine is still used for the prevention and treatment of malaria in Yemen. This study was carried out to determine the prevalence of choloroquine resistance (CQR) of <it>P. falciparum </it>isolated from Yemen based on the <it>pfcrt </it>T76 mutation.</p> <p>Methods</p> <p>A cross-sectional study was carried out among 511 participants from four governorates in Yemen. Blood samples were screened using microscopic and species-specific nested PCR based on the 18S rRNA gene to detect and identify <it>Plasmodium </it>species. Blood samples positive for <it>P. falciparum </it>were used for detecting the <it>pfcrt </it>T76 mutation using nested-PCR.</p> <p>Results</p> <p>The prevalence of <it>pfcrt </it>T76 mutation was 81.5% (66 of 81 isolates). Coastal areas/foothills had higher prevalence of <it>pfcrt </it>T76 mutation compared to highland areas (90.5% <it>vs </it>71.8%) (p = 0.031). The <it>pfcrt </it>T76 mutation had a significant association with parasitaemia (p = 0.045). Univariate analysis shows a significant association of <it>pfcrt </it>T76 mutation with people aged > 10 years (OR = 9, 95% CI = 2.3 - 36.2, p = 0.001), low household income (OR = 5, 95% CI = 1.3 - 19.5, p = 0.027), no insecticide spray (OR = 3.7, 95% CI = 1.16 - 11.86, p = 0.025) and not sleeping under insecticide treated nets (ITNs) (OR = 4.8, 95% CI = 1.38 - 16.78, p = 0.01). Logistic regression model confirmed age > 10 years and low household income as predictors of <it>pfcrt </it>T76 mutation in Yemen <it>P. falciparum </it>isolates.</p> <p>Conclusions</p> <p>The high prevalence of <it>pfcrt </it>T76 mutation in Yemen could be a predictive marker for the prevalence of <it>P. falciparum </it>CQR. This finding shows the necessity for an in-vivo therapeutic efficacy test for CQ.<it> P. falciparum </it>CQR should be addressed in the national strategy to control malaria.</p

    Novel Polymorphisms in Plasmodium falciparum ABC Transporter Genes Are Associated with Major ACT Antimalarial Drug Resistance

    Get PDF
    Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions
    corecore