59 research outputs found

    Versatile multipass cell for laser spectroscopic trace gas analysis

    Get PDF
    The design, construction and characterization of a novel circular multipass cell for sensitive trace gas analysis are presented. This cell allows for easy modification of the optical path length without any changes of its physical parameters. Furthermore, it is suited for three different detection techniques: direct absorption, wavelength modulation and photoacoustics. To demonstrate its performance, mixing ratios of 13CO2 and N2O were measured from ambient air, using a quantum cascade laser. With the direct absorption method, noise equivalent 1-s precisions of 2.7ppb and 0.2ppb are achieved for 13CO2 and N2O, respectively. The wavelength modulation technique resulted in 4.3ppb precision with 1-s averaging for the 13CO2 measurements. AQ-factor of 190 and a normalized noise equivalent minimum absorption of 1.3×10−8cm−1 W Hz−1/2 are achieved using the photoacoustic techniqu

    Continuous isotopic composition measurements of tropospheric CO<sub>2</sub> at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events

    Get PDF
    A quantum cascade laser based absorption spectrometer (QCLAS) is applied for the first time to perform in situ, continuous and high precision isotope ratio measurements of CO<sub>2</sub> in the free troposphere. Time series of the three main CO<sub>2</sub> isotopologue mixing ratios (<sup>12</sup>C<sup>16</sup>CO<sub>2</sub>, <sup>13</sup>C<sup>16</sup>CO<sub>2</sub> and <sup>12</sup>C<sup>18</sup>O<sup>16</sup>O) have simultaneously been measured at one second time resolution over two years (from August 2008 to present) at the High Altitude Research Station Jungfraujoch (3580 m a.s.l., Switzerland). This work focuses on periods in February 2009 only, when sudden and pronounced enhancements in the tropospheric CO<sub>2</sub> were observed. These short-term changes were closely correlated with variations in CO mixing ratios measured at the same site, indicating combustion related emissions as potential source. The analytical precision of 0.046&permil; (at 50 s integration time) for both &delta;<sup>13</sup>C and &delta;<sup>18</sup>O and the high temporal resolution allowed the application of the Keeling plot method for source signature identification. The spatial origin of these CO<sub>2</sub> emission sources was then determined by backward Lagrangian particle dispersion simulations

    High precision and continuous field measurements of δ 13C and δ 18O in carbon dioxide with a cryogen-free QCLAS

    Get PDF
    The present paper describes a compact and cryogen-free, quantum cascade laser based absorption spectrometer (QCLAS) designed for in situ, continuous and high precision isotope ratio measurements of atmospheric CO2. The mobile instrument incorporates several new features including a novel astigmatic multi-pass cell assembly, a quasi-room temperature quantum cascade laser, thermoelectrically cooled detectors as well as a new retrieval approach. The combination of these features now makes it possible to measure isotope ratios of ambient CO2 with a precision of 0.03 and 0.05‰ for δ13C and δ18O, respectively, using a 100s integration time. A robust and optimized calibration procedure was developed to bring the retrieved isotope ratios on an absolute scale. This assures an accuracy better than 0.1‰ under laboratory conditions. The instrument performance was also assessed in a field campaign in which the spectrometer operated autonomously and provided mixing ratio values for the main three CO2 isotopologues at one second time resolution. An accuracy of 0.2‰ was routinely obtained for both isotope ratios during the entire period. The results were in excellent agreement with the standard laboratory-based isotope ratio mass spectrometer measurements made on field-collected flask samples. A few illustrative examples are used to depict the potential of this optical method in atmosphere-biosphere researc

    Breath acetone as a marker of energy balance: an exploratory study in healthy humans.

    Get PDF
    An exploratory study was performed on eight healthy volunteers to assess how short-term changes in energy balance and dietary carbohydrate content impact breath acetone concentrations. Participants were studied on three occasions: on each occasion, they remained fasted and in resting conditions during the first 2 h to assess basal breath acetone and blood beta-hydroxybutyrate (BOHB). During the next 6 h, they remained fasted on one occasion (F), or were fed hourly high carbohydrate (HC) or low-carbohydrate (LC) meals to induce a positive energy balance on the other two occasions. They remained in resting conditions during 4 h, then performed a 2-hour low intensity exercise (25 W) inducing a negative energy balance. In resting conditions, breath acetone and blood BOHB concentrations increased progressively compared to basal values in F, but decreased and remained low throughout the test in HC. With LC, breath acetone increased progressively, while blood BOHB decreased. This exploratory study indicates that breath acetone reliably detects a stimulation of ketogenesis during a short-term fast. It also suggests that LC and HC differentially impact BOHB and acetone production and utilization, and reveals possible limitations to the use of breath acetone as a marker of energy balance

    Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy:method development and first intercomparison results

    Get PDF
    In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition

    Novel laser spectroscopic technique for continuous analysis of N2O isotopomers - application and intercomparison with isotope ratio mass spectrometry

    Get PDF
    RATIONALE Nitrous oxide (N2O), a highly climate-relevant trace gas, is mainly derived from microbial denitrification and nitrification processes in soils. Apportioning N2O to these source processes is a challenging task, but better understanding of the processes is required to improve mitigation strategies. The N2O site-specific 15?N signatures from denitrification and nitrification have been shown to be clearly different, making this signature a potential tool for N2O source identification. We have applied for the first time quantum cascade laser absorption spectroscopy (QCLAS) for the continuous analysis of the intramolecular 15?N distribution of soil-derived N2O and compared this with state-of-the-art isotope ratio mass spectrometry (IRMS). METHODS Soil was amended with nitrate and sucrose and incubated in a laboratory setup. The N2O release was quantified by FTIR spectroscopy, while the N2O intramolecular 15?N distribution was continuously analyzed by online QCLAS at 1?Hz resolution. The QCLAS results on time-integrating flask samples were compared with those from the IRMS analysis. RESULTS The analytical precision (2 sigma) of QCLAS was around 0.3 parts per thousand for the delta 15Nbulk and the 15?N site preference (SP) for 1-min average values. Comparing the two techniques on flask samples, excellent agreement (R2?=?0.99; offset of 1.2 parts per thousand) was observed for the delta 15Nbulk values while for the SP values the correlation was less good (R2?=?0.76; offset of 0.9 parts per thousand), presumably due to the lower precision of the IRMS SP measurements. CONCLUSIONS These findings validate QCLAS as a viable alternative technique with even higher precision than state-of-the-art IRMS. Thus, laser spectroscopy has the potential to contribute significantly to a better understanding of N turnover in soils, which is crucial for advancing strategies to mitigate emissions of this efficient greenhouse gas. Copyright (c) 2012 John Wiley & Sons, Ltd

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Unambiguous identification of <sup>17</sup>O containing ozone isotopomers for symmetry selective detection

    No full text
    Symmetry selective detection of the 17O containing ozone isotopomers 16O16O17O and 16O17O16O requires the unambiguous identification of absorption lines.We report high resolution tuneable diode laser spectrometer measurements of 17O containing ozone isotopomers in the R-branch of the υ3 band and present a purely experimental technique that discriminates between 16O16O17O and 16O17O16O. Around 1040 cm-1, differences in line positions of 16O17O16O upto 4×10-3 cm-1 between our measurements and present spectroscopic database records (HITRAN 2004) are found

    Isotope evidence for ozone formation on surfaces

    No full text
    International audienc
    corecore