809 research outputs found

    Notes on aerodynamic forces on airship hulls

    Get PDF
    For a first approximation the air flow around the airship hull is assumed to obey the laws of perfect (i.e. free from viscosity) incompressible fluid. The flow is further assumed to be free from vortices (or rotational motion of the fluid). These assumptions lead to very great simplifications of the formulae used but necessarily imply an imperfect picture of the actual conditions. The value of the results depends therefore upon the magnitude of the forces produced by the disturbances in the flow caused by viscosity with the consequent production of vortices in the fluid. If these are small in comparison with the forces due to the assumed irrotational perfect fluid flow the results will give a good picture of the actual conditions of an airship in flight

    Inertia Factors of Ellipsoids for Use in Airship Design

    Get PDF
    This report is based on a study made by the writer as a member of the Special Committee on Design of Army Semirigid Airship RS-1 appointed by the National Advisory Committee for Aeronautics. The increasing interest in airships has made the problem of the potential flow of a fluid about an ellipsoid of considerable practical importance. In 1833 George Green, in discussing the effect of the surrounding medium upon the period of a pendulum, derived three elliptic integrals, in terms of which practically all the characteristics of this type of motion can be expressed. The theory of this type of motion is very fully given by Horace Lamb in his "Hydrodynamics," and applications to the theory of airships by many other writers. Tables of the inertia coefficients derived from these integrals are available for the most important special cases. These tables are adequate for most purposes, but occasionally it is desirable to know the values of these integrals in other cases where tabulated values are not available. For this reason it seems worth while to assemble a collection of formulae which would enable them to be computed directly from standard tables of elliptic integrals, circular and hyperbolic functions and logarithms without the need of intermediate transformations. Some of the formulae for special cases (elliptic cylinder, prolate spheroid, oblate spheroid, etc.) have been published before, but the general forms and some special cases have not been found in previous publications. (author

    Classical-path integral adaptive resolution in molecular simulation: towards a smooth quantum-classical coupling

    Full text link
    Simulations that couple different classical molecular models in an adaptive way by changing the number of degrees of freedom on the fly, are available within reasonably consistent theoretical frameworks. The same does not occur when it comes to classical-quantum adaptivity. The main reason for this is the difficulty in describing a continuous transition between the two different kind of physical principles: probabilistic for the quantum and deterministic for the classical. Here we report the basic principles of an algorithm that allows for a continuous and smooth transition by employing the path integral description of atoms.Comment: 8 pages 4 figure

    Hydrogen and muonium in diamond: A path-integral molecular dynamics simulation

    Full text link
    Isolated hydrogen, deuterium, and muonium in diamond have been studied by path-integral molecular dynamics simulations in the canonical ensemble. Finite-temperature properties of these point defects were analyzed in the range from 100 to 800 K. Interatomic interactions were modeled by a tight-binding potential fitted to density-functional calculations. The most stable position for these hydrogenic impurities is found at the C-C bond center. Vibrational frequencies have been obtained from a linear-response approach, based on correlations of atom displacements at finite temperatures. The results show a large anharmonic effect in impurity vibrations at the bond center site, which hardens the vibrational modes with respect to a harmonic approximation. Zero-point motion causes an appreciable shift of the defect level in the electronic gap, as a consequence of electron-phonon interaction. This defect level goes down by 70 meV when replacing hydrogen by muonium.Comment: 11 pages, 8 figure

    The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures

    Get PDF
    The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research

    Fourier Acceleration of Langevin Molecular Dynamics

    Full text link
    Fourier acceleration has been successfully applied to the simulation of lattice field theories for more than a decade. In this paper, we extend the method to the dynamics of discrete particles moving in continuum. Although our method is based on a mapping of the particles' dynamics to a regular grid so that discrete Fourier transforms may be taken, it should be emphasized that the introduction of the grid is a purely algorithmic device and that no smoothing, coarse-graining or mean-field approximations are made. The method thus can be applied to the equations of motion of molecular dynamics (MD), or its Langevin or Brownian variants. For example, in Langevin MD simulations our acceleration technique permits a straightforward spectral decomposition of forces so that the long-wavelength modes are integrated with a longer time step, thereby reducing the time required to reach equilibrium or to decorrelate the system in equilibrium. Speedup factors of up to 30 are observed relative to pure (unaccelerated) Langevin MD. As with acceleration of critical lattice models, even further gains relative to the unaccelerated method are expected for larger systems. Preliminary results for Fourier-accelerated molecular dynamics are presented in order to illustrate the basic concepts. Possible extensions of the method and further lines of research are discussed.Comment: 11 pages, two illustrations included using graphic

    Satellite-based delivery of educational content to geographically isolated communities: A service based approach

    Get PDF
    Enabling learning for members of geographically isolated communities presents benefits in terms of promoting regional development and cost savings for governments and companies. However, notwithstanding recent advances in e-Learning, from both technological and pedagogical perspectives, there are very few, if any, recognised methodologies for user-led design of satellite-based e-learning infrastructures. In this paper, we present a methodology for designing a satellite and wireless based network infrastructure and learning services to support distance learning for such isolated communities. This methodology entails (a) the involvement of community members in the development of targeted learning services from an early stage, and (b) a service-oriented approach to learning solution deployment. Results show, that, while the technological premises of distance learning can be accommodated by hybrid satellite/wireless infrastructures,this has to be complemented with (a) high-quality audio–visual educational material, and (b) the opportunity for community members to interact with other community members either as groups (common-room oriented scenarios) or individuals (home-based scenarios), thus providing an impetus for learner engagement in both formal and informal activities

    On acceleration of Krylov-subspace-based Newton and Arnoldi iterations for incompressible CFD: replacing time steppers and generation of initial guess

    Full text link
    We propose two techniques aimed at improving the convergence rate of steady state and eigenvalue solvers preconditioned by the inverse Stokes operator and realized via time-stepping. First, we suggest a generalization of the Stokes operator so that the resulting preconditioner operator depends on several parameters and whose action preserves zero divergence and boundary conditions. The parameters can be tuned for each problem to speed up the convergence of a Krylov-subspace-based linear algebra solver. This operator can be inverted by the Uzawa-like algorithm, and does not need a time-stepping. Second, we propose to generate an initial guess of steady flow, leading eigenvalue and eigenvector using orthogonal projection on a divergence-free basis satisfying all boundary conditions. The approach, including the two proposed techniques, is illustrated on the solution of the linear stability problem for laterally heated square and cubic cavities
    • …
    corecore