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AERONAUTICAL SYMBOLS.

1. FUNDAMENTAL AND DERIVED UNITS.

o |
Metric English.
Symboel. e -
TUnrit. I Symbol. | Unit. Symbol.
) 1
Length... 1 meter...................... ‘} m, foot {ormile)........... ft. (or mi.).
Time...._. t second.... ... .. ... . ... .. ! sec. | second (or hour)....... sec. (or hr.),
Force.... F weight of one kilogram._ ... .. ke weight of one pound....| b,
_— | .

Power. .. r Lgmfsec. oo ool e ! horsepower.............. iy
Speed. ... el IBEC. } m.op.s. mifhro.oooooLoLL L. M. P, H.

2, GENERAL SYMBOLS, ETC.

Weight, W=myg.
Standard acceleration of gravity,
g=9.806m/sec.? =32.172ft/sec.?

,
Mass, m=—T—‘
g
Density (mass per unit volume), p
Standard density of dry air, 0.1247 (kg.-m.-

sec.) at 15.6°C. and 760 mm. --0.00237 (lb.-
ft.-sec.)

Specific weight of ‘‘standard” air, 1,223 kg/m.®
=0.07635 1b/ft.2 -

Moment of inertia, mk? (indicate axis of the
radius of gyration, %, by proper subscript).

Areca, §; wing area, Sy, etc.

Gap, ¢

Span, b, chord length, ¢.

Aspect ratio=b/c

Distance from c. g. to elevator hinge, f.

Coeflicient of viscosity, .

3. AERODYNAMICAL SYMBOLS.

True airspeed, V

Dynamic (or impact) pressure, q=§’, p¥?

Lift, L; absolute coefficient ¢, — {IQ

Drag, D; absolute coefficient (p— 5?«
Cross-wind force, ; absolute coeflicient
C
0'3:175"
Resultant force, 2
(Note that these coefficients are twice as
large as the old coefficients L,, D..)
Angle of setting of wings (relative to thrust
line), %y
Angle of stabilizer setting with reference to
thrust line %,

Dihedral angle, v

Reynolds Number = pI—:Z, where ! is a linear di-

mension.

e. g., for a model airfoil 3 in. chord, 100 mi/hr.,
normal pressure, 0°C: 255,000 and at 15.6°C,
230,000;

or for a model of 10 cm. chord, 40 m/sec.,
corresponding numbers are 299,000 and
270,000.

Center of pressure coefficient (ratio of distance
of C. P. from leading edge to chord length),
C,.

Angle of stabilizer setting with reference to
lower wing. (4y—iy) =8

Angle of attack, «

Angle of downwash, ¢
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REPORT No. 210

INERTIA FACTORS OF ELLIPSOIDS FOR USE IN AIRSHIP DESIGN

By L. B. TuckKERMAN

This report is based on a study made by the writer as a member of the Special Committee
on Design of Army Semirigid Airship RS-1 appointed by the National Advisory Committee
for Aeronautics.

The increasing interest in airships has made the problem of the potential flow of a fluid
about an ellipsoid of considerable practical importance. In 1833 Green,! in discussing the
effect of the surrounding medium upon the period of a pendulum, derived three elliptic inte-
grals, in terms of which practically all the characteristics of this type of motion can be expressed.
The theory of this type of motion is very fully given by Lamb,? and applications to the theory
of airships by many writers® Tables of the inertia coefficients derived from these integrals are
available for the most important special cases.! °  These tables are adequate for most purposes,
but occasionally it is desirable to know the values of these integrals in other cases where tabu-
lated values are not available. For this reason it secmed worth while to assemble a collection
of formulse which would enable them to be computed directly from standard tables of elliptic
integrals, circular and hyperbolic funetions, and logarithms without the need of intermediate
transformations. Some of the formule for special cases (elliptic cylinder, prolate spheroid,
oblate spheroid, etc.) have been published before, but the general forms and some special cases
have not been found in previous publications.

The additional inertia of the translational potential flow of a fluid about triaxial ellipsoid
is proportional to the three coefficients

K, =47 abe b, K,=47 abo ke, K, =25 abe,

Here %I abe is the volume of the ellipsoid and

«Q, Y

The additional moment of inertia of the rotational potential flow is proportional to the
three coefficients

) b*+¢t,, 1 A+at,, a*+b?
K, =%7 abe 5—fk1,Kz='%’rabc A K= abe T
Here k', k', and k', are given as factors of the corresponding moments of inertia of the ellip-

soid itself and
kl bz - 02)2 Yo — ﬂo
2

1= b2+ 2 b —¢?
‘ bz_*_zn—‘(ao_ﬁo)

with symmetrical expressions for k', and k’s.

1 George Green: “ Researches on the vibration of pendulums in fluid media.”” 'Trans. R. 8. Ed. 1833.

1 Horace Lamb: ' Hydrodynamics' (4th ed. Camb. 1916}, pp. 132-147.

3 See, for example, Max M. Munk: “The aerodynamic forees on airship hulls.,” N. A. C. A,, Report No. 184, 1924,
« Horace Lamb: “The inertia coefficients of an ellipsoid moving in fluid.” G. B. A. C. A, R. & M. No. 623, 1918,
s H. Bateman: “ The inertia coefficients of an airship in a frictionless fluid.”” N. A. C. A., Report No. 164, 1923.
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In the above formule a,, 8, and v, are the special values for A=0 of Green’s integrals

e [T be [T e abe [T
a=abe | riayar B=abe » By a’r=e cﬁ (c*+N A

a=b=c A=+ (@+N B*+N) @+

To transform these integrals into the standard Legendre form substitute

a? —¢? -b? ., br—¢?
sn(u;k)=snu=\/ Y k’— —a <1, k= Foa <!
This gives
2
a’-{-)\——sr—li—,b +A=(a®— (:2) : ,cz+)\ (@ —c?) :2,:1
and
a___2 .
a Va2 —¢
Then
2abc u 2abe
azwa)*'ﬂJ; sn’y du-( a62)312k2 [u— E(u)]
2abe U gn?y 2abc , snu cnw
P=w -3 J, dn*y du= (a* — *)" kg™ [E () — &~k :n u ]
2abe u sn’ud 2abc 1 [snu dnu E
Y@= o dou T @@ k| onu  E@W
Here -
snu dnu J (@—¢) B*+)) snuenu (@) (@+N)
4 enu NV (@+N) (@+N)’ dnw VYV (@+N BN
an

w=sn—t 4L =F (¢; k) where ¢=sin™! r=c
a+ X )\ g a4+

The values of u=F(p; k) and E(u) = E (¢; k) can be obtained directly from standard tables
of elliptic integrals. ‘

Nore.—The notation of elliptic integrals is not standardized. Some authors write the elliptic integral of
the second kind as a function of the amplitude ¢. Some write the argument first and the modulus or modular
angle second; some reverse the order, and some use one form at one time and another at another. Thus we may
find the following forms:

U=F(0; ) =F (k; o) =F (0, ) =F (8; ¢)

EWMZEW N=EW 0=E (0, ) =E(e; 0 =E (k; o) =E 6; v
The more usual tables tabulate the functions according to the amplitude ¢ and the modular angle # so that

u=F(p;0) E(w)=E (¢ 9)

T __ o2 2__p2

o al—¢ . af—b
p=8in"! 4/ f=sin=t 4/ T2 .
a?+ A a?—c

However, the latest, and for some purposes the most convenient, tables by R. L. Hippisley ® tabulate u= Fp=

F(¢;0) and E (w)=E (r)+¢E according to r, where r*=9(Q% =900 Iu_(

where

¢ Smithsonian Mathematical Formule (1923), PP, 260-300.



INERTIA FACTORS OF ELLIPSOIDS FOR USE IN AIRSHIP DESIGN 5
When A =0 the formule simplify to

Zabe
%= Tqz — b (@ — )P [, —

E (u,)]

Z2abc (a* — )& b*—c (a*-b) ¢
B,= (@ —b%) (b — &) [E () Tad— L (ai— 6)2) 1/2]
ac

=y —aym B

Yo=2 2
1-(¢
(&)
Here
@, =sin! 3/9 za— c_ sin™! e, uy=F (¢, 0)

2__ h2
f=sin™ \/Z—z—_—% =sin™ 2, E (u)) =E (g, )

where ¢, and e, are the eccentricities of the central sections normal to the intermediate (b) and
minimum (¢) axes of the ellipsoid.

These formul® are sufficient for the direct evaluation of k,, ky, kg &'y, £y, and k', in the
general case. However, in special cases the elliptic integrals degencrate into algebraic, circular,
hyperbolic, or other functions, or the coeflicients take on indeterminate forms needing special
treatment. The results for many of these special cases are more readily obtained by direct
integration of the special differential forms, but for uniformity are discussed here as limiting
forms of the general elliptic integrals.

1. VERY LONG ELLIPSOID. Limiting case an elliptic eylinder. As a becomes large so that

higher powers of both 2 and 2 become negligible k=1 and at the same time %igo

uy,=log -2—69 and F (u,) =1
In the limit since x log =0

a,=0, Bo=—’b: Yo= p
1+E 1+’5

These are of course more directly obtained by treating the two dimensional flow around an
elliptic cylinder.
9. Erueric pisk. e=0. To quantities of the first order in ¢

2c 2 2
aO:bT‘,ZA:bT) [b Uo'_b E(Ug)]
8 ___2_0__.[ :F (u)—bz;t]
°_—b (az_bz) a 0 0.

v=2[1-F E (@)

In the limit ¢=0, ‘p[,=%, so that u,= K and E(u,) =E, the complete elliptic integrals,

V=B
=L

mod e.
Then in the limit ay=B8,=0, ¥o=2, so that k,=k,=0, but ky= 0.
Thus K,=K,=0 and K, needs special evaluation:

[
1—3 E (uy)
Ky=4Tabe ky= L abez Argpe 0
Yo 7 E )

1 Horace Lamb, l. c., pp. 7986,
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In the limit ¢=0

b3 Jai—
K,=%’r %' mod k=_a’a_b2=e

when a="5 (circular plate) k=e=0, E=;’2—r» so that K, =§ as.

Again to quantities of the first order in ¢

r Y= B )
kl— “‘('Yo"ﬁo)

Yo — &
kl - 0 0
? - ('Yo_au)

, az_bn 2 ﬁo'—'
k’=(a’+b”) o
a2+bz_(ﬂo—0‘o)

In the limit ¢=0, k’,=0, but k', and k', become mﬁmteasL To this order of approxi-

mation.

2= (1= B0 =2 " (02— 1) E (u) — b

2= (Yo ay) =2 gt (@ 267) B (u) + boug)
so that when ¢=0
X —4-,” (lb‘ (az_bz) B
V15202 -0 E— K]
, _ézr aBbZ(GZ_ bz)
2 16[(a*=20°) E+ K]

When a=b (circular disk), these become indeterminate, since k=0 and E< K=%. To

2
__h2
quantities of the first order in (a?2—-5?), (K- E) =2 @ zb » so that K/, = K’ —ig
3. OBLATE SPHEROID. a=b>¢, k=0, k' =1.
. at—ct e
— _ — —1 o -1 __ -
E (v)=u=op=sin \/a’+)\ sin ‘\/1_+_l
a2
and Lim kI—, [u~E (u)]=1/2 (¢~sin ¢ cos ¢)
k=0
2 2+1—e* 1 —e?
then a=ﬂ=(‘%)3“ 2(¢ sin @ COS w)— P € ? <p——e‘/1 )\e
1+a,

2a%c 241 —¢ -
=@t o) =—— = ¢

When A=0, p=sin"" ¢, so that

=B,= 1/1—e (sm_1 e~e1/1—e’)
Yo= 1/1_"32(1/1~_ —sin~ ‘e)
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In the limiting case ¢ =0, e=1 (circular plate) these give as before

K,=K,=0, K,=§a

!
K =K,= 45 l‘K =0
4. PROLATE SPHEROID. a>b=¢, k=1,%k'=0, p=gdu. Then
2
a=(—a%czm(u— tanh w)
2ac

B=v= '(—’_c’_)—’ﬁl/’? (sinh u cosh u—u)

where
1-&

tanh 4 =sin ¢= Ja’+)\ .J] )‘ (a:__cz)au &

V@ - (a+k)=ezJ1 tai

i h h =
sinh 4 cosn u c3+)\ X
1—¢? +E’

and

when A=0, these reduce to

= (I—e’)[l 1+e__28:|

_ (1—e)
- 1

1+e]

The special cases 3 and 4 are of course more readily obtained by direct integration.

O






Positive directions of axes and angles (forces and moments) are shown by arrows.

Axis, Moment about axis. Angle. Velocities.
Force
(para.l.le)l Positi Linear
. . Svm- to axis Desiona- | Sym- ositive Desiona- | Svm-
Desgation. | cyml, | D |y | "ro® | Deson |syme | compo | 4o
: : axis).
Longitudinal....| X X rolling..... L | Y——>Z [roll..... ® u P
Lateral......... Y Y pitching M | Z—X | pitch....| © v q
Normal......... Z zZ yawing..... N | X—Y | yaw..... v w r
Absolute coefficients of moment Angle of set of control surface (relative to
L 0 M o N neutral position), 8. (Indicate surface by
O’—q 58 "™ gec8 T ¢fS proper subscript.)
4. PROPELLER SYMBOLS.
Diameter, D Thrust, T
Pitch (a) Aerodynamic pitch, p, Torque, Q
(b) Effective pitch, ps Power, P
(c) Mean geometric pitch, pg (If ““coefficients” are introduced all units
(d) Virtual pitch, p. used must be consistent.)
(e) Standard pitch, p, Efficiency =1 V/P
Pitch ratio, p/D Revolutions per sec., n; per min., N

Inflow velocity, V7’

. . an4
Slipstream velocity, V, Effective helix angle ®=tan (k'Trrn)

5. NUMERICAL RELATIONS.

1 HP =76.04 kg. m/sec. =550 1b. ft/sec. 11b. =0.45359 kg.
1 kg. m/sec. =0.01315 1P 1 kg. =2.20462 1b.
1 mi/br. =0.44704 m/sec. 1 mi.=1609.35 m.=5280 ft.
1 m/sec.=2.23693 mi/hr. 1 m. =3.28083 ft.
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