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Introduction.

For a first agrrexiratiorn the air flow arcund

o

2ull is assumed to cber the laws of a perfest (i,=2

LLE

. free fzr

viscosity) incompressible fluid, The flov is further assumed

to ve free frorm vorticse (or rotational motion of

These assumrticns lead to very great simplifi

actual oonditions. The value of the results derend

formulae used but necessarily imply an inperfect pi

upon the magnitude of the forces produced ov the disturbances in

the flow caused oy viscosity with ithe cornsejuernt jyroduction of

vorticss in the fiuid, If these are small in comrzarison with ths

forces due to the zssumed irrotational rerfect fluid flow the

results will give a good Ticture of th2 z2ctual con

airshiz in flight
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* Dr. Max M. Munk's theory of the aerondvananic forc
snip hull is jyresented in V.A.C.A, Technical Notes
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General.

The motion of a body through the fluid is accompaniei with
xinetic energy not only of its own motion but also of the motion
of the fluid which it pushes aside, Since the fiuid is assumed
to te Iree from viscosity this kinetic energy of the fluid metion
1s not dissirated but accompaniss the body in its motion, being
transferred from portion tc portion of the fluid as the nody moves
through it, The body, therefore, in any steady motion is accompa-
nied by a steady configuraticn of fluid flow which changes only
when the motion of the body changes, If the velocity cf the body
is increased in any proportion the velocity of all porticns of the
fluid is increased proportionately (provided the velocities are
small in comrarison with the velcsity of sound in the fluid; this
is true here since the fluid is assumed to be incompressible) and
the kinetic energy of the accompanying fluid motion remains pro-
rortional to the kinetic energy of the body itself.

If, however, the character of the motion of the body changes,
the shape of the accompanving fluid motion changes and the corre-
sponding additional kinetic energy changes, although the velocity
rem2in the same,

Pure Translation.

For a motion of pure translation Kirchhoff has shown that the

kinetic energy (E;) of the fiuid can be written

.2 ey 1 ® ;2
2Ep = p KUy + P KyVo + P K V7 (1)

where X, y, and z are three special axes in the body, nutually
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perpendicular Vy, Vy and V, the corresronding components of the
velocity of the configuration and 0 X,, 0 Ky and p K; are
"added inertias" corresponding to thsse three directions. On
Ky, Ky ard X5 depend only thre coufiguration of the body. The

total kinetic energy E of the motion of the vody is
2E = 2Ef 4+ 2By = (QKXMH)V; + (Of{y-‘r rrﬁV; + (C‘Kz+m)V§ (2)

Since no e

3
[

ergy is dissipated, any change in the tctal kinestic

il

energy of the motion of the bedv must be due to work done on the

body (or by the body)
~b6"= 8E=( p K, 4m)V, 6Vx+(£>xy+m)vy §Vy+ (0 Ryum)V, BV, (3)

If this change be due to 2 rotation of the body without change cof

tetal velocity

2 2 b+ 2 P .
Vx + Vy + Vz; = V" = constant
3 7 ) . _
and I 8V + Vy 8y + V, 87, = O

then — 8T =6E = (0K,+ M)Vy 8Vyn(p Kyt N)Vy Vo (pKye MV, 875(4)

where the Lagrangean rultirlier X may be given any value we please.
In order that there be no moment acting on the body tendirg to pro-
duce this change it is necessary that 6E =786 86 = 0 where

T = the moment of force acting on the body and 66 the angle of
rotation. This equation can obviously be satisfied (provided

Ky # Ky»# tzF %) 1in three and only three ways.



AN =- p KX’ Vy = VZ = 0
N = - D Ky 5 VZ = VX =0 (5)
A=~ P Kys Vx =Vy =0

These *three mutually perpendicular directions in the vody are there-

fore directions of steady translation without the action cf exter-

nal moments,

Lateral transfer of momentum.

Consider 2 cecnfiguraticn of fluid flow A, (Fig. 1) having
a resultant momentum M in the y direction and no resuitant mo-
ment of momentum about the z-axis. Let this fluid motiown Tbe ae-
stroyad and replaced by an identical configuration in 4- dis-
rlaced a distance d Thaving 2 component d sin 6 (where ¢ is the
angle between the displacement and the direction of'tha Teouitarn
momentum) in the direction ¢f the x-axis. To effect this cnange
a negative resultant impulse -M wmust be arplied to the fluid in
Ay and 2 vositive resultarnt impulse +M to the fluid in 4z,
That is, a resultant impulse moment Md sin € must act on the
fluid. If, instead of a sudden transfer of momentum the irassier
tikes place continuously durinz the time t with a unii - 5
ity V such that d = Vt the impulse moment Md sin € I3 3ue
to a moment.

T = "MV sin € (%)

acting during the time t.

The distinction here between the momentum of the configuration

of fluid flow and the momentum of 2 solid body should be noticed.
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In 3 30lid body the resultant momentum necessarily lies in the di-
roction of its motion, The diraction of resultant wmomentun of &
configuration cf fluid flow dces nct necessarily coincide with the
direction of the motion of the configuration,

If T =0 then # = and the resultant momentur coincides
in direction with the velocity,

In the three mutually perpendicular directions considered
above, since there is no resultant moment of force, the resultant
momentum of the fluid must coincide in direction with the velocity.
In these three directions therefore, the momentum of the fluid is

ziven by

~1
~—

My = P Kx Vg, My = 0 Ky Vy, Mz = P Ky Vg (

and the resultant momentum in any other uniform translation is the
resultant of these three moments. In general, the resultant mo-
mentum M does not coincide in direction with the velocity of the
body and thus nseds 2 resultant moment T = MV sin € to be applied
to the body in order to maintain 2 uniform motion of translation.

This moment can be calculated either by

~i

e = e -

£ . 2Br_ g (&)

~J)

(23 in 4) or from T = MV sin € where ! sin 8 is the transverse
component of the momentum, (28 in 6)-

The calculation of the coefficients Kg, KV and K, for zny
2iven body solves therefore for that body the problem of the total

momernts necessary to maintain it in uniform translation at any

angle of ritch and yaw.
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If the motion of the body is confined Lo the xv plane and

172

Ky = K. and K4 = ¥;, tren

2

. L2 .2 A . -
2 = 0Ky Vo 4+ 0K g o= 0 (K cos® o+ Kz sin’ a)y

where a is the angle of attack. Then

—3

i
ol
jo] i tT

f =1/3 pV® sin 2 a (¥, - K,) (€

)
~—

or, other-ise, from equation (7)

My = pKy Vg = pKy V cosa

ft

M, = PK, Vy = K, Vsina
and the lateral comronent of the momentum

e

"y cosa - Ny sina

NE
4]
Yo
e}
o
]

i

1/2 pV sin 2 a (H; - %)
and consequently, 2s before
T = VY sin a=1/2 pV° sin 2 o (Ks - %) (g )

rorce Distribution.

The determination of the force distribution which rroducss
these moments requires 2 more detailed investigation,

General Method,

The general method may be sketched as follows:
Under the assumptions here made the fluid flow possesss2s 2 ve-
locity rotential ¢ such that the component velocities of the fluid

(not of the configuration) at anv roint are given by:



Naving determinesd this velocity po%ential the pressure at each
roint of the surface is evaluated from the extended Rarrouilili

thecrem

P.....E_.Cg 2 /g o 2 .

5= 3t - Vav -q v= /vy + vy o+ vy, (10)
Here (0 is the protential of the external forces acting on the flu-
id. Since we are neglecting the change of pressure with height
this may be treated as 2 constant, As Dr, “unk has shown, the

=~

term é%% may, if desired, be transformed into

¢

~)

=~V v cos 8 (11)

o)
ct

where V is the velocity of the configuration at the point and
€ the angle between the velocity of the configuration andusthe
velocity of the fluid,

This pressure is then integrated over the surface of success-
ive zones cof the ship, giving the resultant distribution of longi-
tudinal and lateral forces alongz the ship.

This process although peffectly general in theory is gener-
ally impractical, since the velocity potential 9 and consequently
the velocity distribution has only been determined for a very few
simgle geometrical shapes, and even in these cases the comgputa-
tions are laborious,

Dr. Munk has, however, used the knovledge of the detailed
pressure distribution based upron known velocity potentials in dis-

cussing the effect of changing shape upon flow around tvo dimen-
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sicpal stapes (No. 104, pp. 7, 8 and ),

Arrrozimate Sclution,

0
papiioe PPN 7 — e e+

[ I

to avold these difficulties, Pr., Munk attacke the provlem ir

vnc following approximate way: The flow about any porticn of the
e¢tengated ship is considered to approximate at any given instant
the corresponding flow about an infinite cylinder having the same
srcss-section. (Fig, 2). In this case the transverse added inertia
1z readily calculated from the well knocwn case of two dimensional
fiow about an elliptic cylinder.

The velocity potential in this case is determined from the

complex function

=f {® + i V)

i
th
—~
=3

3
.~

z = (x + 1 v)

where @ 1is the velocity potential and v the stream function,

Here

*»

z = A w4+ B
w

Proper croice of the constants A and B rits this to any ellirtic
cylinder between the limits of the infinitely thin flat plate and
the cizcle. (See Lamb's Hydrodynamics, 4th edition, p.79, Lorenz.
Technische Hydro-Mechanik, p.2€7.)
If a and b are the major and minor semi-axes of the el-
lipse, the 2dded inertia per unit length o Ké = o0 v° and
2

<) Ké = o ma*, In the special case of a circular cylinder to

which he confines himself in this presentation
Ky =Ky =K, =D° Z=38 (12)

- > '
<~here S is the cross-saction of the ship at this peint, X,
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is of course zero. The contribution of any element of lengtk dx
t> the total momant of the ship is therefore aprroximately from

agquztion (9)

\QT ~] 90 2 x Lo ! T - o4
vr di=dT=1/2 e V® sin 8¢ (K - K9)dx=1/29¥° zin 23S 4x  (13)
.o 4T _ asr .
since o= = shear and =3 = lateral load rer unit length, the
< dx
total moment T = 1/3 0V°sin 2 af S dx=1/2 pVEQ sin 2 © (14)

where & 1is the volume of the ship, 3nd the lateral load

F = f £ dx is distributed according to the 1law
a°r 2 4S B}
£ dx = pdx = 1/2 P V" sin 3o &2 dx (15)

N
Tnis same method of reasoning he applies later to the proolem of
the rotating ship.

The same result is arrived at more directly as Dr. “unk ex-
rlained verbally, as foliovws:!

The transverse momentum of an elemert of length of the ship

is, from equations (7) and (12) (rig. 2)

‘
%% dx = df = o V sin o S ax (18)

. . A4S ) S
If the cross-section S were increasing at the rate it the trans-

verse momentum would be increasing at the rate

-~

afaM) _ : as 4. - -
ot = PV sina at dx = T dx

rzquiring 2 transverse load distribution £ dx +*o impart this in-
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crease of momentum., The equivalent of this increase of cross-
section is imparted to the trarsverse air flow by the longitudinal
component of the ship's motion (Fig. 3). As shown in the diagram
the air which was flowing about *the section S 1is after a time 4t
¢S

3 s [ dS o] -~y T _\’.:l§__ ] -
flowing about the section 8 + St dt —~here St V cos a i

The corresponding incre-se of transverse momentum must be imparted

to 1t by a laterally distributed force on the shir.

f dx = pV sin aV cosa g~S—dx
dx
(15)
ds
=1/2 pV®sin 2 & 3y dx
as before,
The total moment on the ship calculated by this approximation
Wa3
T=1/2 pV®Q sin 2 ¢ (14)
obviously here the volume Teplaces the coefficient (K, - ¥ ) or

equation (9).

These coefficients K, and K; have been calculated for a num-
ber of simple shapes. In particular, Lamb has calculated their
value for ovary ellipscids of different ratios of length to diameter.

Ir this case, for 21l finite lengths K, - K; is less than

~
CHe

tn

the volume. Dr. Munk therefore proposes to apply 2 ccrrection

tor (k, - k,) (where k, = %3 and k, = a ) to the prescedirz feor-

21
Q

mula, thus giving

-3
i
[}
~
%]
o)
<

)
=
%)
|
=
>l
g
0
[s
=
[ae]
Q
O
—_
-t
\)

Total moment

3

QWQ
5

Shear
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[

Lateral force f dx = 1/2 pV® (k; ~ k,)sin 20 5= dx  (19)

where k, and &k are Lamb's coefficients for the ellipsoid corre-

stonding to the ship as calculated by the formula

\

L . .
$ (ellipsoid) = ( , (shbip) (20)

(wrb

E
6
ROTATION
General

If a body be in uniform translation parallel to one of its
principal directions (V), (Fig. 4), the added momentum of the
fluid will have the same direction. About any axis A rerpendic-
ular to this direction there will be in general a resultant moment
of momentum of the added momentum, There will, however, e a line
BB' parallel to the direction of the velocity such that the result-
ant moment of momentum about any perpendicular axis {(A) through it
is zero, A similar line exists for translation in each of the other
two "principal directions". These three lines do not in general
intersect in a point. In bodies possessing certain types of aero-
dynamic symmetry, however, théy intersect in a point C, the aero-
dynamic center of the body. If the body possesses geometrical sym-
metry this aerodynamic center lies on the planes or axes of symme-
try. This aerodynamic center exists in airship hulls and will be
used as the center of reference for points in the body. The axis
of x will be laid through it in the "longitudinal" principal axis
of the body, this axis being an axis of central symmetry.

The ship (Fig. 5) is suppcsed to be turning 7ith a uniform

angular velocity »% about a fixed azis O where V 1is the linear
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velocity of the aerodynamic center. The accompanying velocity con-
figuraticn has a2 steady shape and steady speed and conseQuently a
constant added energy but turns with the ship about the fixed cen-
ter 0. The constancy of the energy requires that the resultant
of all the forces acting on the ship pass through the center O
since otherwise the forces would have a moment about this axis and
conseduently add (cr subtract) energy, Thsce forces may be re-
solved into 1 radial (centripetal) air force F, necsssary to bal-
ance the centrifugal force of the ship and of the accomranying
fluid and a tangential (inertial draz) force Fy =2ither positive
or negative, which is added to the frictional drag (neglected here).
The radial forces pass through 0O, but the tangential force Fy
considered as applied at the aerodynamic center requires ar accom-
ranying moment F.R to displace the line of action to C.

For the purpose of determining these forces the motion may be
resolved into two parts, a parallel translation along the path and

a2 rotation with angular velocity g about the aerodynamic center.

If the center of mass of the ship coincides with its aerodynamic
center this latter motion will involve nc resultant forces nor Tre-
sultant moments and consequently the resulitant forces are calcula-
ble from the paréllel translation alone,.

The total tangential momentum M. (Fig. 6) of the ship in
parallel motion is corposed of two parts, 7. due to the mass m

1

cf the body
.= PV om (21)

and MTe due to the added tang=ntizl inertia



AD)
[AY]
~

Mo o= oV (Kz sin® o + %, cez®a) (

while the total radial momentum Mr is tre added radizl momerntum

alone and is

then (see Fig. B)
I&X = BJI‘ sin P + Mo cos & My = M. 1 -+ II-( .

My = Mp cos € - Mr sin €

From these the radial and tangential forces necsnsary to maintain

the motion are

au ) ‘ v .
F, = EEX = (My cos 6 - M, sin 9)%%.,: = (M- cos f- M+ sin€ )
i ; v \
Fy = g5 -{My sin € + M. cos 6)%%: - M. sin £+ M, cos &)

Then F, = é Mp = 1/3 o v* % (Kz - X3) sin Ba (24)

This represents a drag when G 1s positive,

2

——~
[hY]
O1

~

(K, sin®a + Ky cos? 7))

jn g [

And & ""'“Lér Mr = - p V7 —%m_ oV

which is a centrifugal force.

This computation is of course exactly the game as the usual
calculation of centrifugal force in rigzid dynamics, the only differ-
ance being the existence of a transverse momentum, ~vhich gives rise

tc the "centrifugal" drag force. This is a generalized centrifugal
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forez in the Lagrangean sense.
The drag Fr is wholly due to air forces 2cting on the ship

but of the centrifugal force r that part due to the mass of the

3

- 2 - - -~ o . 3 ~ halal
ship PV % m involves no air forces, the added centrifugal force

pvz“% (K, sin® a + K, cns® & ) however, is transmitted to the
ship by 2ir forces acting on it.

The drag F- considered applied at the aerodynamic center is
accompznizd by the moment F R = 1/3 ¢ 7® (K. - ¥,) sin 2 ¢ which
is the same as the unstable moment in rectilinear moticn (equation
(9) ). The maintenance of the motion demands therefore (Fig. 7)

a resultant force F and a moment T in addition to the aerody-
namic forces here discussed. The fins alone supply the transverse
component F' and the moment T = F'a.

Distribution of these forces.

Dr. Munk calculates the distribution of these air forces by
the first method used in the case of rectilinear motion. Here,
however, it is necessary to bear in mind that because of the curva-
ture of the rath the effective angle of attaok of successive ele-

ments of the ship's length are different,

These angles of attack may be calculated as follows (See Fig.
X__ = R =__R
sin €  gyn(a' + g) cos a'
@' =0 - f =0a - arc sin ( % cos 6')
Then sin 2a'= sin 2& cos 2 (arc sin % cos a')

X a!
= cos )
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If o and % are both small this rcoduces to

T
)
55

N’

sin 2 ¢' = gin 3a - 3

iy

Then each element of length dx contributes an element of momen

QM
dx

dx = 1/2 p V? (sin ZG—B%)de (27)
The first term is due to the translation alone and the second term
to the added rotation cormbined with the translation. Dr. Munk cal-

culates these terms separately but the reasoning is ecuivalent to

that here given. The total amount is

48]
[¢¢]

T:]_/gpvgsingfldex-—pVg%/ S X dx (3

The first term is the unstable moment cf the translational motion,
-nd the second term is zero sirce J S x dx 1s the static momant
of the volume about the aerodynamic center, which on the assump-
tions here made coincides with the center of volume. As vefcre,
this calculation gives 2 resultant moment somewhat laTger than
acts on a ship of finite length so that he intrcduces again the

correctior factor (¥, — ¥,) in the first term,
2 b

2

3

This factor gives the correct resultant mcment. ince the

is

4
()

remaining terms have no resultant, nor resultant moment, the
no obvious correction factor. Dr. Munk uses here k. * as a cor-
rection factor instead of (%, - k.).

The force Aia*rihnt+tinn ig the»

*Note: The difference is mot great and it is all a matter of judg-
ment but Dr. “unk's reason for using a different correction factor
here is not clezar tc me. The fcrces are all calculated on the sam-
basiz of approximation. L.B.T.



e > a3 ¥, , dS 3 ( \
———dx= L= oV {l.-k. e 20 iy - oV == (x5 C)adx 29
O'ngxfd,{ i/2pV (i.-¥,)sin ! ol g xgy + S)a )
and the total trarsverre force
Fo= / {Cx = L’J

This ayproximate Jistridbuticn of tran.verse air forces ther
fore accounts for the resultant unstable moment of the ship,
It of course does not account for the drag., The undermined drag
forces are, however, srall, and teing lengitudinal, give Tise to
no aypreciable vending moments in the hull.

In addition, however, the approximaticn has vet to account foo

the added cerntrifuvzal force (emuation (237 ).

!y o
T <

(Yo sinfo + k) coz®a)

ST

This force is of course small since & and X, are bcth small.

L : . - . .
For an ol ratio of 3 and an anrle ¢of attack of € degrees it is
less than 6 per cent of the ship's own centrifugal force.

Of the two parts ¢f this added centrifuza} force, the first

2 Ky 5 2 s 2
oV §~ sin"a = PV @ sin®a

being due to the transverse added inertia can reasonably be assum-

ed to be distributed acoording to the cross sectional area or

£ dx = pvzﬁis sin?a (30)
2 I{l 2 kl
The second term oV cos?a = oV R Q
] (31)

(a being small cos? a = 1 approx. )
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reguires a dbre Getailed treatment, since its lonzitudinal distri-
tutior. might :»ive rise to considerable bending moments. As this
term arises frem the longitudinal added inertia alone, he consid-
ers a case of longitudinal flow only, the flow arising from & sin-
gle scurce and equal sink (Fig. 9). He chooses this flow (which
gives a blunter airship model) instead of the corresponding ellip-
soid because of the simpler mathematical treatment. The corre=-

sponding velocity is

, VD® /1 ) . .
@ o= 16 (;;‘— %:'> (seez Fig, 2) with the velocity distribution

v = - ?Q vD® ( X - C _ X 4+ &\
X cX 16

Here L

H

2C 4+ Q._ approximately
J e

or nearly L

il

2c.

As may be seen from the indicated line of flow the longitudinal
component of the velocity and consequently the added inertia is
positive near the two ends but negative along nearly the whole of

the side of the ship. At mid-section this negative velocity 1is
2 2

. VD _
approximately e diminishing to about 1222 opposite the two
=]

sources 2nd then rapidly changing sign around the nose. To simpli-

fy his computation Dr, Munk assumes that it maintains its mid-
2

section value along the whole length and that the transverse

212
velocity is negligible. This obviously results in an over-estima-
tion of the bending moments produced, This flow, however, Iepre-

sents a pure translation. The ship actually is rotating about a



center 0 (Fig. 10), so that if V 4is +he ship's velocity at the
serodynamnic center, the surface velocity of the ship changes ACroJs
ke shi vt = (V 7y 5% any point a horvizon-
the ship having a velccity = + ¥V -y poin no:
tal distance y from the center. Dr, Munk* assumes that the air
velocity rerains ths eame in the circular flight as in straight
flight,** which gives
* In a personal conversation, Dr. lfunk states that this method of

reagoning is differsnt from ithe ons he used, but as 1t arrives at
the same -esult, is presumably eduivaleat to 1t

**iote: If the altermative assimption “e made that the air velocity
at any point of the curface in circular flight bears tne same ratlo
to the surface velocity of tne ship as it does in straight flight
then

vD? ¥
t = A
17 (1 R)
=V ( X
v Vv (1 + E’i)
R - & 2
_ Do, r
and P "“%;T?*‘kl - qz) 1+ ¥)

and the pressure graaient

dp . _OVEL? o DP N ¥\ o V°DZ ALTTOX
ay RL8‘1~4?/(1+R/ R LZ 2FF

imately,

This pressure gradient is twice as great as on Dr,. Munk's. assumption,
It seems preobable that the actual air velocity will lie between
these two extremes, so that Dr, Murk's assumption reprcsents an un-
der-estimation of the rressure gradient and consequently an under-
estination of thbe bending moments, 4s noted above, the assumption
that the air velocity waintained its mid-section velocity

vD? . . . :
EE? along the whole length, causad an over-estimation of the bending
moments. These two faztcrs 11 of course rartially compensate each
other, so that the Munk's a1ﬁ- ption i3 probuoly more rnearly correct,



air velocity v' =v = - =

corfiouration velocity V' =V (1 + %).

Since the trarsvarse air velocity is cunsidered negligible

8= C ard cecs 8§ =1, thern tie pressuce ‘ejuation L.

oV' v! cos 8 + constant

-
fi
l
wlo
]

gives
= P /VJ: ‘\\‘ ~ [ /s Vo VD2
F==-—= ==, + ¢ 71+ [ =] 4+ constant
2 i ’ 1. BL
and the pressure gradl:nt
- el
dn  _ oD
ay 2L
This pressure gradient acts in trhz same 7ay as 3 gravitati ot
v\]z' ?“3
. . o A3 ; s . Y : o
essure gradient due to 2 fluid of density ll--§ in a field of
n
s L pVvirLie
horizontal intensity 1. The total lateral force is then T =
F<IEP A

(32) and is distributed along the ship proportional to the cross-

1re
sectional area., The added centrifugal force J%l— Qk, consists
. i 167 19} n
therefore of two centrifugal forces 5 g — Q (¥ + 377) (33) ccn-

centrated practically at the ends of the ship combined with 2 cen-

2 2
. - v D - . . . Ls
tripetal force —— Q = (32) distributed along the ship proror-
* s}
3 W -~ ~ 3 1 p‘v2 . N
tional to the cross-ssctional area. The factor —E__ is of course

tha centrifugal force of the ship itself, when in a2 state of static

e
equilibrium. For % =8, ky = .045 and —== = ,Cl4.
‘ L
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Transverse force on the fins.

A small partof the centrifugal forse can be bilanccd ov the
lateral viscous draz of the ship but th2 larger portion nust be
balanced by the lateral force crn tne fins. 1In addition, this Jater-
al force must neutralize the 'mstable moment of the ship (Fig. 7).
In his computation Dr. “hunk assumes.this latesral force equal to the
centrifugal force of the shin z2lone. nis either neglents the add-
ed centrifugal force or considers it neutralized by the lateral

viscous drag. Equating moments (see Tig. 7)

oVEQE = oV Q1/2 (x, - %) sin 28
or (k, - k,) sin 20 = &2 (34)
Summary.

The lateral forces acting on the ship are then:

1. The forces producing the unstable moment due to angle of

attack
T =1/2 pV° (k, - &) sin 2a Q (17)
= DRV6 aQ (35)

The feorces producing this mcoment are distributed according to the

law

@]

- Ny
PYV” 88 4k (38)

ax

5N
&
T
D
&

-~

2. The lateral Tricss Gue %o rotation combined with tangential
velocity. These fcrces have no resultant and no resultant moment.

They are distributed according tec the law
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% V.’-J dg <A - e
f dg =~ R ]\Ag (X ;:;’{ -+ S/ dx (—Jij/
ve ;s
5. The censrifugal forces or the shir itself -—— Q V32

rrovided the ship is in s*atic equilibrium. IJ in adiition tne
rass of the ship is distributed lengitudinally rprorortionzl
toc the cross section these are distributed according to the law

o v
R

s
93]
-

~

f dx =

These nearly neutrilize %re second term of (2)*,
4, The added centrifuga2l force du2 *to the zddsd longitudinal

inertia

This is distributed approzimately as a corcentiratsld loacd

oV Q N (33)
- - KXy + ? ]
R 2 3L° 7/
at each end and 2 load distributed 2ccording to the law
o ve D? o
foax = - o =% S dx 52)
R aL” dx N

5. The added centrifuzal force due tc the added transvarse

inertia

- I
— k. G sin® 0 (Z2)

This is distributed according tc the law

.2 .2 2
<Y . ' LV Kz X -
f dx = —=— k,sin®a § dx = 2 — 5 dx {(3C)
H R R® (k, - k,J

*”ote For any other rass distribution it would be of course easvy
to calculate the corresponding force distribution., Since normally
the static bending moments of the hull zare everywhere hogging mo-
ments, the actual force distributicn is somewhat greater at ths
ends and less in the middle. L.B.T.
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6. The lateral force on the fins practiciily concentrated at

the center of pressure of the fins

pRVE Q (25)

The sum total of all forces is then:

Three concentrated loads

. ~ eV 0 . D2\ s
a) at front end outward = 5 (k, 17 (33)
o _V*E
b) at center of pressure ~{— O (25)
of fins inward
. 2 2 -

. P Ve o0 DTN (30)

c) at rear end outward -—R - (ks + o1

And a ferce distributed along the ship, with the resultant outward

intensity

O T 0
f = ‘RV ((a - k= x) %;SZ + (1 < k-~ 51 *+ kp sin® «) s
(3¢)
. 2 ~
e v® ds N, 2 k
- ( _ - Y = —_— R S
Btk 0 g s U-k-gE)Se g Go)®

.

)

T +
v

[¢]

It

The method of reasoning used in these papers introduces dis-
crepancies between the computed forces and the actual forces due
to two things:

1) The viscosity of the air is assumed to be zero with the
consequent elimination of all viscoug drag.

These discrepancies in the present state of the theory can
probably only be estimated by compariscn with experiment,

3) The transverse flow about any element of the ship is as-
sumed to be the same as that about the corresponding portion of an

. . . . . } 1 43
infinite cylinder. This assumption is most accurate when D dx
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o s . '-,q:, 3 -
is small. It will Tepresent most closely the sorditions amidshics

(% g@_:o.\. The largest discrepancies will occur near the wlunt
\ > /

nose of the ship (’% g% = °;>and the next largest near the tail,
where % g%- is finite but large.

Since even small discrepancies in forces near the ends may
result in relatively large discrepancies in the bending moments
on the ship, it would seem to be very desirable tc have some oom-
parison cf the results of this approximiate method with an accurate
computation of the forces on a shape approximating that of the
airship.

The tneory of the potential flow about an ovary ellipscid is
so complete that it is possible (although tedious) to ccmpute the
actual force distribution along such a share both for straight
flight and steady turning.

It would seem that the comparison of the results of such a
computation with the results of the arproximate analysis given
above would be of value in indicating the magnitude of the dis-
crepancies involved.

L. B. Tuckerman.



Sugrlementary Note o, 1. Modificaticn ~i Dr. Munl's forrulae.

"r. C. P.

)

urgess nas called my attention tc the practical

o

disadvantzge of an approximats load distributicn shich is not in
equilibriwre., Py neglecting +he added centrifugal forzes in the
calculation of the lateral force on the fins Dr. Munk lsaves an

O

unbalanced out=ard force of - - Q (ky, + ko sin®G). This males

no aprrecziable difference in tle resulting momerts on the shirp
but is inconvenient in practical comyutation, sinze it prevents
the check obtained by computing onth ways 2lorng the null.
This may be avoided by usirg the total certrifvgal force in
calculating the fin load, i.e.
> ¥

=~—0a(l + k,+ kysin® ¢ ) = ¢V°Q 1/3 (1, - k,)sin 2 ©
L

Py

or

]
(kz,- k,)sin 2¢a¢ = %—

(1 4+ ky+ bpysin® o)

Since & is small the secend arproximation of its value
will be sufficiently close for a numerical check. Then the tctal

forces on the ghip becoma:

) at bor outward SRS ( S
a) at bow outware e Q 1/2(x% -
MALWAL L B Q ‘L/G £y + o717 7
- ~ e
Doy [=1 ooy \r [ H - - .
b) aE U\?htv? of preasure PP“"C&“(I + ¥+ ks sin- u)
of fins inward t
e bt
: Y - o)
c) at stern outwar —§%~ Q  1/3(k + =7 \
ourward L7 .

and 1 forege distributad alorg the ship with the resultant cut-
7ard intensity:

2 s o
oV , . - ol8) . - Do -
f = [{a(l + ki+ k-sin® o' - kox 15{ +(1-k +¥x.sin” o -=2)8]

Il
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llunk's Th2ory

Supriementary llcte o, 2, Discrevancy between Dr.
and N.P,L, E3atimatss.

In computations for the ZR-1, Mr. Burgess has noted some Qis-
vropancy tetween Dr. Munk's thecrvy and H.P.L., Estimates tased on
rod2l tests.,  He pointed out that i% is 2t lecst rartially explain-
€ by the neglect in Dr. lunk's tasory of the lateral resultant

force on the hull arising from viscosity., The N.P,L. results show

; Force on hull  34CC o

% % "Toral force ~ 8B0CT - 00°
1% 1o 3 2

£ - force on fins _ 630C._ aag

Total force 9800°

Toz lateral force on the hull is thus over 1/3 the total force
and would make a considsrable change in ‘he results.
It seems that the following method might give a screwhai tet-

ter agpreximation. Assurme forces as in

fdi

icatad in the diagram,

e e
» ___.,__._—v——‘-“":—""\_\

< 7 ®

Ny Unstable
Y
Besultant Resultant
force on force on
Y

fins. hull= Gh
PR P

-
7
[
T
o)

Q
[
w
ct
}J
v

ing mements:

£3

2 (f + En) = cVQ 1/2(k -k, )sir S =,



{
faV]
[92]
{

oT -
\k, - Fy)sin 20, = TI%" (f + &an)
Jhere Dr, Munk fourd
/ . 21
tky, - k,)sin 20, = T
then sin 504 ‘
e =f + [ X
sin 24
orT E _ S1n o :'C":
h
Burgess gives oy = 7% 13" ; a, = 8¢ 45
. 2487
S8 a4
Substituting N - RIS - = 0,51
values - 90

The lateral forces on the hull have then apparently a result-
ant applied about haif way between the center of buoyancy and the
center of pressure of ths fin,

It would seem then that a recomputation by Dr. Munk's method
based on an angle of yaw of 7° 12' with the additior of some rea-
sonable distribution of lateral forces on the hull with a resultant
at O.51a might give a still closer zpproximition to the actual

forces in a steady turn.
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Supplemsntary Note lo. 3,

In corparing airshirc of different fin2ness r.tio the vari-
ation of Lamb's coefficiznts k,, ¥ ani &, - ¥k, may not always
be negligible, although this variation need not D2 accurateliy es-

timited. TFor such cases it mav bs tortn while rnoting the lirnear

O]
4]
=3
oy
)
%]
[¢)]
O
O
4+
3
[¢4]
H
t
e
¢

approximations given on the acconpanyinz figur

jog

whole Tange with a maximam error of &% of the volume or the ranse

ad

4 < § < ® 7ith a mazimum errov 0f %,

It is of course obvious that in the range 4 < § < « rarzabolic

arrroximations would give still closer valuss. For insiance, 1T

this range the approximaticn k, - ¥, = 1 - 1,053 (' has 3
maximum error of less than O.Sﬂ. ir view of *he roughness of the

other approximations invelved the accuracy gained is rrcbaoly nct

worth th= extra labor.

L.B.T.



X

U WU W,

Fig.1

8l
E

Fig.



TR R RN T A S A
= 0,003 1.030.1.000 C. CCO G.ooojo.ooc £.00C 1.0C0 1.CCO €, 000
©.97 0.1003 0.950 0.250 0.010 C.031 0,030 -0.JC% £.€39 0.€30 C. 019
9.02'C.11C9 0.954 0,945 0.0C9 0.034 0,033 -0.002 0,930 C. €11 C.019
£.01 0,1248 © 915‘0.958ﬁ 0.C07 0,029 C.037 -0.008 0.91€ 0,800 0. CL8
£,270.1435 C Q3330.928‘ 0.005 0.036 C, 043 -0, 007 0.€87 C,885 0.013
6.01 0.1654 0,918 0,917 +0,001:0,045 0.050 -0, 005 0. 8§73 0. 857 +0. 008

4.99;0.2004‘0.895;0.9001—0.005‘0.059 0.080 -0.CC1 0, 838 C, £1C -C, 003

(&)
98]
O
&)
iA .
O
O
U
[AS)

5.9910.250630.86010.8755-0.OngO,OBB*C‘075 +0, 007 0,778

2.99‘0.3344‘0.803 O.853§-0.0SOEO.128;O.lOOl+0.082‘G.?81 C. 732 -0.051

Arrroximate values of Lamb's coefficients for rrolate srheroid,
kl, kg a,l’ld. kg - kl

Petween ]% = 4 and %A: oMiximum error is 0.02 of volure

AT e S A O P
. R e S e T } '1-1/2 DL |
A R D*‘}':TZ‘*::;":T: r‘.f“;:;d = + SRR
| | B e Sl =
L = B e
08 —— t 4 3‘ “’ S
A T -~
ko*rk
e e et LR S B - B D e N
|
6 . I D IO SO _
!
!
Y] N N S ] L
|
R/ SR WU S S SR e —
.3 S— B -
2
U‘J.—_—'“ : T "’ - i s |—_ "‘"—i-*— )
r .| |
S S e ﬁ_ﬁn_gkf_,-iw-~f
: ‘ | — — e gg— 's" i _.--:_..:( = :—: ‘—;4—_ ;
0 ggén;»fm:%z:=¥”“ﬁ’“ Wl ! | | e3n/Ly




AV
o1
—

L.
1. G0

D/L

0.C0Co
0.1C03
0. 1109
0. 1248
o485
0,1e54!
0.'2004
C. 3506
0. 3344
0. 3284
0. 500

0. 8587
1. 0000

;.c:d?l;ooc- c ocoio,oooéc.cao 0.050 1.00C 1.0CC €. Cu0
0.9680 C.950 O.OlOYO.CZI€O.QSO -0. 03¢ 0.979.3.900[ C. C.
©. 954 0.243 0.009 0.024 C. 055 -0.0ZlfO.QSO C. €80 C. 04
C.O%q;O.QSB; 0. CO7 0.02910.663 ~0. 033 0.916 O.E(b’ 0, 04l
0.933%1.928; O<OCSE0.035i0.073 -0, 036 0.€97 C.E€57 C.O0W
C-91830.9l7i+0.00150.045iC.C83 ~0. 038 0,873 0. £54 C.C3@
0.895;O.900;—0.00Si0.05910.lOO -0. 041 C.83¢6 0.800i 0. C36
0.86010.875\~O.015f0.08810.185 -0.043‘0.?7810.749 0. 022
e 803j6.835f—0.OSOiO.123i0.1671—0.045‘0.681TO.6662 0.015
‘ ’ ' | ! ,
0. 783 0.80- -0.0380.158 0.139 -0. 043 0. €07 ;0. 602 +0. 005
‘C.70350.750 -0.048?O.209%O.250-—0.041‘O 493{G.SCO;~O 007
:O.CBITO.GHV -0.04610,305j0.333 -0. 028 C.SlGiO.SSS;—O 017
iopsooio.eao o.oooio.500{0.500‘—0.000'0.000fo.ooo 0. 000
Aprroximate values of Lamb's coefficients ¥y, k, and k, - k; fcT
of volume cver whole

rrolate spheroid.Error less than 0.05 part

range




Fig.3
Fi~r U



Fig.o

N
N
-.\"Q \.‘
, A
Nty
—2 "




Fig.7

Toes,? ard =



m

Fie,

Fios

*

O

3 ‘*”-1(‘\‘




