NACA.TN- 129

TFCHNICAL HOTES
NATIOMAL ADVISORY COMMITPE GOR AERONAUTACS.

ino. 129.

March, 1923.

TATIOMAL ADVISOFY SOMMTTEF FOR ATRONAUTICS.

TEOMICAI NOTE NO. 2%.

NOTES ON AERODURMIC FORCES OJ ATESHIP HULLS.*
By L. B. Tuckerman,
Engineer Physicist, Bureeu of Standards.

Introduction.

For a first agroximation the air flow around the airsing huli is assumed to cber the laws of a parfest (i. e. free from iiscosity) incompressible fluid. The flor is further assumed to be free from vortices (or rotational motion of the fivid).

These assumpticns lead to very great simplifications of the Formulae used but necessarily imply an imperfect picture of the actual conditions. The value of the results derenas trerefore upon the magnitude of the forces froduced by the disturbances in the flow caused by visoosity with the consequert ryoduction of vortices in tre fluid. If these are small in comarison witr the forces due to the assumed irrotational rerfect fluid flow the results will give a good -iotrre of the actral corditions of an airsini- in flight.

* Dr. Max M. Munk's theory of the aerodynanic forces on an airshif hull is rresented in N.A.C.A. Teshnical Notes Nos. 104, 105 and 106. This rarer was frepared by Dr. I. E. Tuckerman, a memasa of the special committee on the examination of the Naval Airshir Za-1, is a rart of the Comittee's reart and as an interrietation and discussion of Dr. Munk's fafers.

Genera.

The motion of a body througit the fluid is acomparied mith kinetio energy not only of its own motion but also of the motion of the fluid which it pushes aside. Since the firid is assumed to be iree from viscosity this kinetic energy of the fiuid motion is not dissipated but accomparies the body in its motion, being transferred from portion to portion of the fluid as the body moves through it. The wody, therefore, in any steady motion is accompanied by a steady configuration of fluid flow which changes only when the motion of the body chances. If the velocity of the body is increased in any proportion the velooity of all portions of the fluid is increased proportionately (provided the velocities are small in comrarison with the velocity of sound in the fluid; this is true here since the fluid is assumed to be incompressible) and the kinetic energy of the acompanying fluid motion remains ano portional to the kinetic energy of the body itself.

If, however, the character of the motion of the body changes, the shape of the acoompanying fluid motion changes and the corresponding additional kinetic energy changes, although the velocity remain the same.

Pure Translation.

For a motion of pure translation Kirchhoff has shown that the kinetic energy (E_{f}) of the fiuid can be written

$$
\begin{equation*}
2 \mathrm{E}_{\mathrm{f}}=\rho \mathrm{K}_{\mathrm{X}} V_{\mathrm{X}}^{2}+\rho \mathrm{K}_{\mathrm{y}} V_{\mathrm{Y}}^{2}+\rho \mathrm{K}_{\mathrm{z}} V_{z}^{2} \tag{I}
\end{equation*}
$$

where x, y, and z are three special axes in the body, mutually
perpendicular V_{x}, V_{y} and V_{z} the corresconding components of the velocity of the corfiguration and $\rho K_{X}, \rho K_{y}$ and ρK_{z} are "added inertias" corresronding to these three directions. On K_{X}, K_{y} and K_{z} depend only the configuration of the body. The total kinetic energy E of the motion of the body is

$$
\begin{equation*}
2 E=2 E_{f}+2 E_{\mathrm{V}}=\left(\rho \mathrm{K}_{\mathrm{x}}+m\right) \mathrm{V}_{\mathrm{X}}^{2}+\left(0 \mathrm{~K}_{\mathrm{y}}+m\right) \mathrm{V}_{\mathrm{y}}^{2}+\left(\rho \mathrm{K}_{\mathrm{z}}+m\right) V_{\mathrm{Z}}^{2} \tag{2}
\end{equation*}
$$

Since no energy is dissipajed, any change in the total kinetic energy of the motion of the body mist be due to rork done on the body (or by the body)

$$
\begin{equation*}
-\delta V=\delta E=\left(\rho K_{x}+m\right) V_{x} \delta V_{x}+\left(\rho K_{y}+m\right) V_{y} \delta V_{y}+\left(\rho K_{z}+m\right) V_{z} \delta V_{z} \tag{3}
\end{equation*}
$$

If this change be due to a rotation of the body without clange of total velocity
and

$$
\begin{aligned}
& V_{x}^{2}+V_{y}^{2}+V_{z}^{2}=V^{2}=\text { constant } \\
& V_{x} \delta V_{x}+V_{y} \delta V_{y}+V_{z} \delta V_{z}=0
\end{aligned}
$$

$$
\text { then }-\delta W=\delta E=\left(\rho \mathrm{K}_{\mathrm{x}}+\lambda\right) \mathrm{V}_{\mathrm{x}} \delta \mathrm{~V}_{\mathrm{x}}+\left(\rho \mathrm{K}_{\mathrm{y}}+\lambda\right) \mathrm{V}_{\mathrm{y}} \delta \mathrm{~V}_{\mathrm{y}}+\left(\rho \mathrm{K}_{\mathrm{z}^{+}} \lambda\right) V_{z} \delta V_{\mathrm{z}}(4)
$$

There the Lagrangean multiplier λ may be given any value re please. In order that there be no moment acting on the body tending to produce this change it is necessary that $\delta E=T \delta \quad \theta=0$ where $T=$ the moment of force acting on tre body and $\delta \theta$ the angle of rotation. This equation can obviously be satisfied (provided $\left.k_{x} \neq k_{y} \neq k_{z} \neq k_{x}\right)$ in three and only three mays.

$$
\begin{align*}
& \lambda=-\rho \mathrm{K}_{\mathrm{X}}, V_{\mathrm{Y}}=\mathrm{V}_{\mathrm{z}}=0 \\
& \lambda=-\rho \mathrm{K}_{\mathrm{Y}}, V_{\mathrm{Z}}=\mathrm{V}_{\mathrm{X}}=0 \tag{5}\\
& \lambda=-\rho \mathrm{K}_{\mathrm{Z}}, V_{\mathrm{X}}=V_{\mathrm{Y}}=0
\end{align*}
$$

These three mutually perpendicular directions in the kody are therefore directions of steady translation without the a ouicn of external moments.

Lateral transfer of momentum.
Consider a configuration of fluid flow A, (Fig. 1) having a resultant momentum M in the y direction and no resintant moment of momentum about the z-axis. Let this fluid motion be uestroyed and replaced by an identical configuration in $A_{\text {a }}$ displaced a distance d having a component $d \sin \theta$ (Fhere θ is the argle betreen the displacement and the direction of tre wesithret momentum) in the direction of the x-axis. To effect tris caree a negative resultant impulse $-M$ must be applied to the fluid in A_{1} and a rositive resultant impulse $+M$ to the fluid in A_{2}. That is, a resultant impulse moment $M d$ sin θ must act or the rluid. If, instead of a sudden transfer of momentum the tranfer takes place continuously duriñ the time t with a unif ity V such that $d=V t$ the impulse moment $M d \sin \in \dot{y}$ jue to a moment.

$$
\begin{equation*}
T=M \sin \theta \tag{6}
\end{equation*}
$$

acting during the time t.
The distinction here between the momentum of the configuration of fluid flow and the momentum of a solid body should be noticed.

In a solid body the resultant momentum nesessarily lios in the direction of its motion. The direction of resultent momertun of a configuration of fluid flow does not recessarily coincide with the direction of the motion of the configuration.

If $T=0$ then $A=0$ and the resuitant momentum soincides in direction with the velocity.

In the three mutually perpendicular directions considered above, since there is no resultant moment of force, the resultant momentum of the fluid must coincide in direction with the velocity. In these throe directions therefore, the momentum of the fluid is given by

$$
\begin{equation*}
M_{X}=\rho K_{X} V_{X}, M_{y}=\rho K_{y} V_{Y}, M_{z}=\rho K_{Z} V_{z} \tag{7}
\end{equation*}
$$

and the resultant momentum in any other uniform translation is the resultant of these three moments. In general, the resultant momentum M does not coincide in direction oith the velocity of the body and thus needs a resultant moment $T=M V \sin G$ to be applied to the body in order to maintain a uniform motion of translation. This moment can be calculated either by

$$
\begin{equation*}
\frac{\bar{c} E}{\bar{\partial} F}=\frac{\partial \mathbb{P}_{f}}{\partial \hat{\theta}}=T \tag{8}
\end{equation*}
$$

(as in 4) of from $T=M V \sin \theta$ where $\operatorname{II} \sin \theta$ is the transverse component of the momentum, (as in 6).

The calculation of the coefficients K_{X}, K_{y} and K_{Z} for any Eiven body solves therefore for that body the problem of the total momerts necessary to maintain it in uniform translation at any angle of pitch and yar.

If the motion of the body is confined to the $x y$ plane and

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{y}}=\mathrm{K}_{2} \text { and } \mathrm{K}_{\mathrm{x}}=\mathrm{K}_{1} \text {, then } \\
& 2 \mathrm{E}_{\mathrm{f}}=0 \mathrm{~K}_{1} V_{\mathrm{X}}^{2}+0 \mathrm{~K}_{2} y_{y}^{2}=0\left(\mathrm{~K}_{1} \cos ^{2} a+K_{2} \sin ^{2} a\right) V^{2}
\end{aligned}
$$

Where α is the angle of attack. Then

$$
T=\frac{\partial E_{f}}{\partial \alpha}=1 / 2 \rho V^{2} \sin 2 a\left(K_{2}-K_{1}\right)
$$

or, other"ise, from equation (7)

$$
\begin{aligned}
& M_{x}=\rho K_{1} V_{x}=\rho K_{1} V \cos \alpha \\
& M_{y}=\rho K_{2} V_{y}=\rho K_{z} V \sin \alpha
\end{aligned}
$$

and the lateral component of the momentum

$$
\begin{aligned}
M \sin a & =M_{y} \cos a-M_{X} \sin a \\
& =1 / 2 \rho V \sin 2 a\left(K_{z}-K_{1}\right)
\end{aligned}
$$

and consequently, as before

$$
T=V M \sin \alpha=1 / 3 \rho V^{2} \sin 2 \alpha\left(K_{2}-K_{1}\right)
$$

Force Distribution.

The determination of the force distribution which froduces these moments requires a more detailed investigation. General Method.

The general method may be sketched as follors:
Under the assumptions here made the fluid flow possesses a velocity potential φ such that the component velocities of the fluid (not of the configuration) at any point are given by:

$$
V_{X}=-\frac{\bar{c} \varphi}{\bar{c} x}, V_{Y}=-\frac{\bar{c} \varphi}{\bar{c} Y}, V_{z}=-\frac{\lambda \varphi}{\bar{c} z}
$$

'uring determined this velocity potential the pressure at each point of the surface is evaluated from the extended Boprouilli thecrem

$$
\begin{equation*}
\frac{P}{\rho}=\frac{\lambda \varphi}{\partial t}-1 / 2 v^{2}-\Omega \quad v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} \tag{10}
\end{equation*}
$$

Here Ω is the potential of the external forces acting on the fluid. Since we are neglecting the change of pressure vith height this may be treated as a constant. As Dr. Munk has shomn, the term $\frac{\partial \varphi}{\partial t}$ may, if desired, be transformed into

$$
\begin{equation*}
\frac{\bar{c} \varphi}{\bar{c} t}=-V v \cos \theta \tag{11}
\end{equation*}
$$

Where V is the velocity of the configuration at tre foint and θ the angle betreen the velocity of the configuration and the velocity of the fluid.

This pressure is then integrated over the surface of successive zones of the ship, giving the resultant distribution of longitudinal and lateral forces along the ship.

This process although perfectly general in theory is generally impractical, since the velocity fotential φ and consequently the velocity distribution has only been determined for a very fev simple geometrical shapes, and even in these cases the computations are laborious.

Dr. Munk has, hovever, used the knowledge of the detailed pressure distribution based upon known velocity potentials in discussing the effect of changing shape upon flow arounc two dimen-
sucnal shapes (No. 104, pp. 7, 8 ard 9!.
Arrocimate Sclution.
To $\begin{aligned} & \text { woid these difficulties, Dr. Mink attade tiae froojem ir }\end{aligned}$ onc following approximate way: The flow about any fortion of the elengated ship is considered to approximate at ary given instant the corresponding flow about an infinite oylinder having the same orcss-section (Fig. 2). In this case the transverse aded inertia is readily calculated from the well known case of two dimerisional fion about an elliptic cylinder.

The velocity potential in this case is determined from the complex function

$$
z=(x+i y)=f(\pi)=f(\varphi+i \dot{\psi})
$$

where φ is the velocity potential and ψ the stream function. fiere

$$
z=A W+\frac{B}{\pi}
$$

Proper choice of the constants A and B ijits this to any ellictic oylinder between the limits of the infinitely thin flat plate and the circle. (See Lamb's Hydrodynamios, 4th edition, f. 79, Lozenz: Technische Hydro-Mechanik, p. 287.)

If a and b are the major and minor semi-axes of the ellipse, the added inertia per unit length $\rho K_{3}^{\prime}=0 \pi b^{2}$ and $\rho K_{b}^{\prime}=\rho \pi a^{2}$. In the special case of a circular cylinder to which he confines himself in this presentation

$$
\begin{equation*}
K_{a}^{\prime}=K_{a}^{\prime}=K_{b}^{\prime}=D^{2} \frac{\pi}{4}=S \tag{12}
\end{equation*}
$$

There S is the cross-section of the ship at this point, K_{1}^{\prime}
is of course zero. The contribution of any element of length $d x$ to the total moment of the ship is therefore approximately from - bastion (9)

$$
\begin{equation*}
\frac{\dot{d}}{\dot{x}} d:=\dot{d} T=1 / 2 \rho V^{2} \sin 2 a\left(K_{2}^{\prime}-K_{1}^{\prime}\right) d x=1 / 3 \rho V^{2} \sin 3 a s d x \tag{13}
\end{equation*}
$$

since $\frac{d T}{d x}=$ shear and $\frac{d^{2} T}{d x^{2}}=$ lateral load fer unit length, the total moment $T=1 / 2 \rho V^{2} \sin 2 \alpha \int S d x=1 / 2 \rho V^{2} Q \sin 20$

Where δ is the volume of the ship, and the lateral load $F=\int f d x$ is distributed according to the $1 a \pi$

$$
\begin{equation*}
f d x=\frac{d^{2} T}{d x^{2}} d x=1 / 2 \rho V^{2} \sin 2 \alpha \frac{d S}{d x} d x \tag{15}
\end{equation*}
$$

This same method of reasoning he applies later to the problem of the rotating ship.

The same result is arrived at more directly as Dr. "uni exrained verbally, as follows:

The transverse momentum of an element of length of the ship is, from equations (7) and (13) (rig. 2)

$$
\begin{equation*}
\frac{d M}{d x} d x=d M=\rho V \sin a S d x \tag{16}
\end{equation*}
$$

If the cross-section S were increasing at the rate $\frac{d S}{d t}$ the transverse momentum would be increasing at the rate

$$
\frac{d(d Y)}{d t}=\rho V \sin \alpha \frac{d S}{d t} d x=i d x
$$

requiring a transverse load distribution $f d x$ to impart this in-
crease of momentum. The equivalent of this increase of crosssection is imparted to the trarsverse air flor by the longitudinal component of the ship's motion (Fig. 3). As shown in the diagram the air which was flowing about the section S is after a time dt flowing about the section $S+\frac{d S}{d t} d t$ there $\frac{d S}{d t}=V \cos \alpha \frac{d S}{d x}$.

The corresponding incresse of transverse momentum must be imparted to it by a laterally distributed force on the ship.

$$
\begin{align*}
f d x & =\rho V \sin a V \cos a \frac{d S}{d x} d x \\
& =1 / 2 \rho V^{2} \sin 2 a \frac{d S}{d x} d x \tag{15}
\end{align*}
$$

as before.
The total moment on the ship calculated by this approximation พ2.

$$
\begin{equation*}
T=1 / 2 \rho V^{2} Q \sin 2 \alpha \tag{14}
\end{equation*}
$$

obviously here the volume replaces the coefficient $\left(K_{2}-K_{1}\right)$ or equation (9).

These coefficients K_{2} and K_{1} have been calculated for number of simple shapes. In particular, Lamo has calculated their value for ovary ellipsoids of different ratios of length to diameter.

Ir this case, for all finite lengths $K_{2}-K_{1}$ is lese than the volume. Dr. Murk therefore proposes to apply a correction faotor $\left(k_{2}-k_{y}\right)$ (where $k_{2}=\frac{K_{2}}{Q}$ and $k_{1}=\frac{K_{1}}{Q}$) to the precedirg formula, thus giving

$$
\begin{array}{ll}
\text { Total moment } & T=1 / 2 \rho V^{2}\left(k_{2}-k_{1}\right) \sin 3 a Q \\
\text { Shear } & \frac{d T}{d x}=1 / 2 \rho V^{2}\left(k_{2}-k_{1}\right) \sin 2 a \sigma \tag{18}
\end{array}
$$

Lateral force $f d x=1 / 2 \rho V^{2}\left(k_{2}-k_{y}\right) \sin 2 a \frac{d y}{d x} d x$
where k_{2} and k_{1} are Lamb's coefficients for the ellipsoid corresronding to the ship as calculated by the formula

$$
\begin{equation*}
\frac{L}{D}(\text { eilipsoid })=\left(\sqrt{\frac{\pi}{6} \frac{L^{3}}{Q}}\right)(\operatorname{ship}) \tag{20}
\end{equation*}
$$

ROTATION
General
If a body be in uniform translation parallel to one of its principal directions (V), (Fig. 4), the added momertum of the fluid will have the same direction About any axis A' rerpendicular to this direction there "ill be in general a resultant moment of momentum of the added monentum. There rill, however, be a line B^{\prime} parallel to the direction of the velocity such that the resultant moment of momentum about any perpendicular axjs (A) through it is zero. A similar line exists for translation in each of the other two "principal directions". These three lines do not in general intersect in a point. In bodies possessing certain types of aerodynamic symmetry, however, they intersect in a point C, the aerodynamic center of the body. If the body possesses geometrical symmetry this aerodynamic center lies on the planes or axes of symmetry. This aerodynamic center exists in airship hulls and will be lised as the center of reference for points in the body. The axis of x rill be laid through it in the "longitudinal" principal axis of the body, this axis beins an axis of central symmetry.

The ship (Fig. 5) is supposed to be turning vith a uniform angular velocity $\frac{V}{R}$ about a fixed azis O where V is the linear
velocity of the zerodynamic center. The accompanying velocity configuration has a steady shape and steady speed and consequently a constant added energy but turns with the ship about the fixed certer 0 . The constancy of the energy requires that the resultant of all the forces acting on the ship pass through the center 0 since otherwise the forces rould have a moment about this axis and consequently add (or subtract) energy. These forces may be resolved into a radial (centripetal) air force F_{r} necessary to balance the centrifugal force of the ship and of the acompanyins fluid and a tangential (inertial drag) force F_{T} either positive or negative, which is added to the frictional drag (neglected here). The radial forces pass through 0 , but the tangential force F_{T} considered as applied at the aerodynamic center requires ar aocompanying moment $F_{\top} R$ to displace the line of action to C.

For the purpose of determining these forces the motion may be resolved into two parts, a parallel translation along the path and a rotation with angular velocity $\frac{V}{R}$ about the aerodynamic center. If the center of mass of the ship coincides with its aerodynamic center this latter motion will involve no resultant forces nor resultant moments and consequently the resultant forces are calculable from the parallel translation alone.

The total tangential momentum M_{T} (Fig. 6) of the ship in parallel motion is corposed of two parts, " T_{1} due to the mass m of the body

$$
\begin{equation*}
A_{T_{1}}=\rho \mathrm{V} \mathrm{~m} \tag{21}
\end{equation*}
$$

and M_{T} due to the added targential inertia

$$
\begin{equation*}
M_{r_{2}}=\rho V\left(K_{2} \sin ^{2} a+K_{1} \cos a\right) \tag{23}
\end{equation*}
$$

wile the total radial momentum M_{r} is tre aoded radial momertum alone and is

$$
\begin{equation*}
M_{r}=1 / 2 \rho V\left(K_{2}-K_{1}\right) \sin 20 \tag{23}
\end{equation*}
$$

then (see Fig. 6)

$$
\begin{aligned}
& M_{X}=M_{r} \sin \theta+M_{r} \cos \theta \quad M_{T}=M_{T}+M_{T} \\
& M_{Y}=M_{r} \cos \theta-M_{T} \sin \theta
\end{aligned}
$$

From these the radial and tangential forces necessary to maintain the motion are

$$
\begin{aligned}
& F_{X}=\frac{d M_{X}}{d t}=\left(M_{I} \cos \theta-M_{T} \sin \theta\right) \frac{d \theta}{d t}=\frac{V}{F}\left(M_{I} \cos \theta-M_{T} \sin \theta\right) \\
& F_{Y}=\frac{d M_{y}}{d t}=-\left(M_{I} \sin \theta+M_{T} \cos \theta\right) \frac{d \theta}{d t}=-\frac{V}{F}\left(M_{r} \sin \theta+M_{T} \cos \theta\right)
\end{aligned}
$$

If $\theta=0 \quad F_{X}=F_{T}$ and $F_{Y}=F_{r}$

Then $F_{T}=\frac{V}{R} M_{r}=1 / 2 \rho V^{\hat{c}} \frac{\lambda}{\bar{F}}\left(K_{2}-K_{1}\right)$ sin $2 a$
This represents \exists drag when α is positive.
And $F_{r}=-\frac{V}{R} M_{T}=-\rho V^{2} \frac{1}{R} m-\rho V^{2} \frac{1}{F_{1}}\left(K_{2} \sin ^{2} a+K_{1} \cos ^{2} x\right)$
Which is a centrifugal force.
This computation is of course exactly the same as the usual caloulation of centrifugal force in rigid dynamics, the only difference being the existence of a transverse momentum, rhich gives rise to the "centrifugal" drag force. This is a generalized centrifugal
force in the Lagrangean serse.
The drag F_{T} is rholly due to air forces acting on the ship but of the centrifugal. force F_{2}, that part due to the mass of the ship $\rho V^{2} \frac{1}{R} m$ involves no air forces, the added centrifugal force $\rho V^{2}-\frac{1}{R}\left(K_{2} \sin ^{2} \alpha+K_{2} \cos ^{2} \alpha\right)$ nowever, is transmitted to the ship by air forces acting or it.

The drag F_{+}considered applied at the aerodynamic center is accompanied by the moment $F_{T} R=1 / 2 \rho V^{2}\left(K_{2}-K_{1}\right) \sin 2 a$ ohich is the same as the unstable moment in rectilinear motion (equation (Q)). The maintenance of the motion demands therefore (Fig. 7) a resultant force F and a moment T in addition to the aerodynamic forces here discussed. The fins alone supply the transverse component F^{\prime} ard the moment $T=F^{\prime} a$.
Distribution of these forces.
Dr. Munk calculates the distribution of these air forces by the first method used in the case of rectilinear motion. Here, homever, it is necessary to bear in mind that because of the curvature of the path the effective angle of attack of successive elements of the ship's length are different.

These angles of attack may be calculated as follors (See Fig. 8).

$$
\begin{aligned}
& \frac{x}{\sin \theta}=\frac{R}{\sin \left(a^{\prime}+\frac{\pi}{2}\right)}=\frac{R}{\cos a^{\prime}} \\
& \alpha^{\prime}=a-\rho=a-\operatorname{arc} \sin \left(\frac{x}{R} \cos a^{\prime}\right)
\end{aligned}
$$

Then $\sin 2 \alpha^{\prime}=\sin 2 a \cos 2^{\prime}\left(\operatorname{arc} \sin \frac{x}{R} \cos a^{\prime}\right)$

$$
-\cos 2 a \sin 2\left(\operatorname{arc} \sin \frac{x}{R} \cos a^{\prime}\right)
$$

If a and $\frac{x}{R}$ are both small this roduces to

$$
\begin{equation*}
\sin 2 a^{\prime}=\sin 2 a-2 \frac{x}{R} \tag{36}
\end{equation*}
$$

Then each element of length $d x$ contributes an element of moment

$$
\begin{equation*}
\frac{d y}{d x} d x=1 / 2 \rho V^{2}\left(\sin 2 \alpha-2 \frac{x}{F}\right) S d x \tag{37}
\end{equation*}
$$

The first term is due to the translation alone and the second term to the added rotation combined with the translation. Dr. Munk calculates these terms separately but the reasoning is equivalent to that here given. The total amount is

$$
\begin{equation*}
T=1 / 2 \rho V^{2} \sin 2 a \int S d x-\rho V^{2} \frac{1}{R} \int S x d x \tag{28}
\end{equation*}
$$

The first term is the unstable moment of the translational motion, and the second term is zero sirce $\int S X d x$ is the static moment of the volume about the aerodynamic center, which on the assumptions here made coincides with the center of volume. As before, this caloulation gives a resultant moment somewhat larger than acts on a ship of finite length so that he introduces again the correction factor $\left(k_{2}-k_{1}\right)$ in the first terr.

This factor gives the correct resultant monent. Since the remaining terms have no resultant, nor resultant moment, there is no obvious correction factor. Dr. Munk uees here k_{2} * as a correction factor instead of $\left(k_{2}-k_{1}\right)$.

- The foroe ris+tributinn is then
* Note: The difference is not great and it is all a matter of judgment but Dr. Tunk's reason for using a different correction factor here is not clear to me. The forces are all calculated on the sam. basis of approximation. L.B.T.

$$
\begin{equation*}
\frac{d^{2} M}{d x^{2}} d x=f d x=1 / 2 p v^{2}\left(n_{2}-k_{2}\right) \sin 2 a \frac{d S}{d x} d x-p v^{2 k_{2}} \frac{d S}{F}\left(x \frac{d x}{d x}\right. \tag{29}
\end{equation*}
$$

ard the total transusce force

$$
\bar{r}=\int \dot{i} \dot{d} x=0
$$

This approaimate intribution oi tranverse air forces ther fore accounts for the resultant unstable moment of the ship. It of course does not account for the drag. The undermined drag sorces are, however, small, and being longitudinal, give rise to no appreciable berdine moments in the hull.

In addition, homever, the urf roximation has yet to account fo: the added certrifugar forse (equation (20)).

$$
\rho V^{2} \frac{1}{R}\left(Y_{2} \sin ^{2} \theta+K_{1} \cos ^{2} \alpha\right)
$$

This force is of counse small since α and K, are both small. For an $\frac{L}{D}$ ratio of ard an ancle of attack of ε degrees it is less than 6 fer cent of the shif's own centrifueal force. Of the two parts of this added centringal force, the first

$$
\rho V^{2} \frac{K_{2}}{R} \sin ^{2} \alpha=\rho V^{2} \frac{\pi_{2}}{R} Q \sin ^{2} \alpha
$$

being due to the transverse added inertia can reasonably be assumed to be distributed acoording to the cross sectional area or

$$
\begin{equation*}
f d x=\rho V^{2} \frac{k_{2}}{R} S \sin ^{2} \alpha \tag{30}
\end{equation*}
$$

The second term $\rho V^{2} \frac{K_{1}}{R} \cos ^{2} a=\rho V^{2} \frac{k_{1}}{R} Q$

$$
\begin{equation*}
\text { (} a \text { being small } \cos ^{2} a=1 \text { approk.) } \tag{31}
\end{equation*}
$$

requires a more cetailed treatment, since its longitudinal distributior might jive rise to considerable bending moments. As this term arises from the longitudinal added inertia alone, he considers a case of longitudinal. flow only, the flow arising from a single source and equal sink (Fig. 9). He chooses this flow (which gives a blunter airship model) instead of the corresponding ellipsoid because of the simpler mathematical treatment. The corre=sponding velocity is
$\varphi=\frac{V D^{2}}{16}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$ (see Fig. 9) with the velocity distribution

$$
v_{x}=-\frac{\partial \varphi}{\partial x} \frac{V D^{2}}{16}\left(\frac{x-c}{r_{1}^{3}}-\frac{x+c}{r_{2}^{3}}\right)
$$

$$
\text { Here } L=2 c+\frac{D}{\sqrt{2}} \text { approximately }
$$

or nearly $L=2 c$.
As may be seen from the indicated line of flot the longitudinal component of the velocity and consequently the added inertia is positive near the two ends but negative along neariy the whole of the side of the ship. At mid-section this negative velocity is approximately $\frac{\mathrm{VD}^{2}}{3 L^{2}}$ diminishing to about $\frac{V D^{2}}{16 L^{2}}$ opposite the two sources and then rapidly changing sign around the nose. To simplify his computation Dr. Munk assumes that it maintains its midsection value $\frac{V D^{2}}{2 L^{2}}$ along the whole length and that the transverse velocity is negligible. This obviously results in an over-estimation of the bending moments produced. This flow, however, represents a pure translation. The ship actually is rotating about a
center 0 (Fig. 10), so that if V is the shif's velocity at the aerodynanio center, the surface velucity of the ship changes acrose the ship having a velccity $V^{\prime}=\left(V+y \frac{T}{R}\right)$ at any point a horizon. tal distance y from the center. Dr. Munk* assumes that the air velooity remains the same in the circular flight as in straight flight,** whicn gives

* In a personal conversation, Dr. Sunis states that this metiod of reazoring is differont from the one he usca, but as it arrives at the same zesult, is presimably equivalent to it.
** Note: If the altemative assmption be made that the sir velocity at any point of the surface in oircular flisht bears the same ratio to the surface velooity of the ship as it does in straight figght then
and

$$
\begin{aligned}
& V^{\prime}=-\frac{V D^{2}}{3 L^{2}}\left(1+\frac{Y}{R}\right) \\
& V^{\prime}=V\left(1+\frac{Y}{H}\right) \\
& p=\frac{R V^{2} D^{2}}{2} L^{2}\left(1-\frac{D^{2}}{4 L^{2}}\right)\left(1+\frac{Y}{R}\right)^{2}
\end{aligned}
$$

and the pressure graäient

$$
\frac{d \rho}{d y}=\frac{\rho V^{2} D^{2}}{F L^{2}}\left(1-\frac{D^{2}}{4 L^{2}}\right)\left(1+\frac{V}{F}\right)=\frac{O V^{2} D^{2}}{R L^{2}} \text { aprax- }
$$

imetely.
This pressure gradient is twice as great as on Dr. Munk's assumption. It seems probable that the actual air velooity will lie betreen these two extremes, so that Dr. Murk's assumption represents an un-der-estimation of the pressure gradient ard consequentiy an underestimation of the bending moments. As noted above, the assumption that the air velocity meirtained its mid-section velocity $\frac{V D^{2}}{2 L^{2}}$ along the mhole lergth, caused an over-estimation of the bending
moments. These two fartris rill of course partially compensate each other, so that the Wun's asoumpion is probably more rearly correct.

$$
\begin{aligned}
& \text { air velocity } V^{\prime}=V=-\frac{V D^{2}}{2 T^{2}} \\
& \text { configuration veiocity } V^{\prime}=V\left(I+\frac{Y}{R}\right) .
\end{aligned}
$$

Since the transverse ain velocity is considered negligible

$$
\theta=0 \operatorname{ard} \cos \theta=1, \quad \text { then the pressure equation }
$$

combined with (11))

$$
F=-\frac{\rho}{2} v^{\prime 2}-O V^{\prime} v^{\prime} \cos \theta+\text { constant }
$$

gives

$$
F=-\frac{P}{2}\left(\frac{V D^{e}}{2 L}\right)+\left[\left(1+\frac{V}{Z}\right] \quad\left[\frac{V D^{2}}{2 L^{2}}\right]+\right.\text { constant }
$$

and the pressure gradient

$$
\frac{d y}{d y}=\frac{0 y^{2}}{2} \frac{2}{2}
$$

This pressure gradient acts in the same ray as a gravitation... pressure gradient due to a fluid of density $\frac{\rho V^{2} D^{2}}{2 R L^{2}}$ in a field of horizontal intensity 1. The total lateral force is then $\frac{p V^{2} D^{3}}{3 \mathrm{~F}}$ (32) and is distributed along the ship proportional to the crosssectional area. The added centrifugal force $\frac{p V^{2}}{F} Q k$, consists therefore of two centrifugal forces $\frac{1}{2} \frac{\rho \cdot V^{2}}{R} Q\left(k_{1}+\frac{D^{2}}{2 L^{2}}\right)$ (33) ochcentrated practically at the ends of the ship combined with a centripetal force $\frac{\rho V^{2}}{F} Q \frac{D^{2}}{2 L^{2}}$ (32) distributed along the ship procortional to the cross-sectional area. The factor $\frac{P}{R} Q$ is of course the centrifugal force of the ship itself, when in a state of static equilibrium. For $\frac{L}{D}=6, k_{1}=.045$ and $\frac{D^{2}}{2 L^{2}}=.014$.

Tranguerse force on the fins.

i small partof the centrifugal foroe can be buiancod by the lateral viscous dras of the shif but the larger fontion must be balanced by the lateral force cr the fins. In adjition, this lateral force must neutzalize the mstable moment of tho shif (gis. 7). In his computation Dr. Turk assumes this lateral force equal to the centrifugal foice of the ship elone. This either regleots the add... ed centrifugal force or considers it neutralieed by the lateral viscous drag. Equating moments (see Fig. 7)

$$
\begin{align*}
& \rho V^{2} Q \frac{a}{R}=\rho V^{2} Q 1 / 2\left(k_{2}-k_{1}\right) \sin 2 a \\
& \left(k_{2}-k_{1}\right) \sin 2 a=\frac{2 a}{R} \tag{34}
\end{align*}
$$

Summary.
The lateral forces acting on the ship are then:

1. The forces producing the unstable moment due to angle of at tack

$$
\begin{align*}
T & =1 / 2 \rho V^{2}\left(k_{2}-k_{1}\right) \sin 2 a Q \tag{17}\\
& =\frac{\rho V^{2}}{R} a Q \tag{35}
\end{align*}
$$

The forces producing this moment are aistributed according to the 1aw

$$
\begin{equation*}
f d x=\frac{P V^{2}}{P} a \frac{c E}{d x} d x \tag{36}
\end{equation*}
$$

2. The lateral irmoss due to rotation combined with tangential velocity. These forces have no reauitant and no resultant moment. They are distributed according to the $1 a 7$

$$
\begin{equation*}
f d x=-\frac{P V^{z}}{R} k_{2}\left(x \frac{d S}{\partial x}+S\right) d x \tag{39}
\end{equation*}
$$

3. The centrifugal forces or the shir itself $\frac{P v^{2}}{P}$ Q (30) Frovided the shif is in static equilibrium. If in adaitior the mass of tie ship is distributed longituainally proportional to the cross section these are distributed according to the law

$$
\begin{equation*}
f d x=\frac{\rho V^{2}}{R} S d x \tag{37}
\end{equation*}
$$

These nearly neutralize tre second term of (2)*.
4. The added sentrifugal force due to the added Iongituiriril inertia

$$
\begin{equation*}
\frac{p v^{2}}{R} k_{1} 饣 \tag{32}
\end{equation*}
$$

This is distriouted appro:imately as a concentrated loaci

$$
\begin{equation*}
\frac{P V^{2}}{R} \frac{Q}{3}\left(k_{1}+\frac{D^{2}}{2 L^{2}}\right) \tag{33}
\end{equation*}
$$

\#t each end and a load distributed acoording to the law

$$
\begin{equation*}
f d x=-\frac{\rho V^{2}}{E} \frac{D^{2}}{2 L} S d x \tag{30}
\end{equation*}
$$

5. The added cortrifugal force due to the added trarsverse inertia

$$
\begin{equation*}
\frac{\rho V^{2}}{R} k_{2} \Omega \sin ^{2} 0 \tag{20}
\end{equation*}
$$

This is distributed according to the law

$$
\begin{equation*}
f d x=\frac{\rho V^{2}}{R} k_{2} \sin ^{2} \alpha \operatorname{six}=\frac{\rho V^{2}}{R} \frac{a^{2}}{R^{2}} \frac{k_{2}}{\left(k_{2}-k_{1}\right)^{2}} S d x \tag{30}
\end{equation*}
$$

*Note: For any other mass distribution it mould be of course easy to colculate the corresponding force distribution. Since normally the static bending moments of the hull are everywhere hogging moments, the actual force distribution is somewhat greater at the ends and less in the midde. L.B.T.
6. The lateral force on the fins practically concentrated at the center of pressure of the fins

$$
\begin{equation*}
-\frac{\rho V^{2}}{F} Q \tag{25}
\end{equation*}
$$

The sum total of all forces is then:
Three concentrated loads
a) at front end outward $\frac{\rho V^{2}}{R} \frac{\Omega}{2}\left(k_{1}+\frac{D^{2}}{2 L}\right)$
b) at center of pressure $\frac{\rho V^{2}}{R} \Omega$
of fins inward
c) at rear end outward $\frac{\rho V^{2}}{R} \frac{C}{2}\left(k_{j}+\frac{D^{2}}{2 L^{2}}\right)$;

And a force distributed along the ship, with the resultant outward intensity

$$
\begin{align*}
f & =\frac{O V^{2}}{R}\left[\left(a-k_{2} x\right) \frac{d S}{d x}+\left(1-k_{2}-\frac{D^{2}}{\partial L^{2}}+k_{2} \sin ^{2} \alpha\right) S\right] \\
& =\frac{\rho V^{2}}{R}\left[\left(a-k_{2} x\right) \frac{d S}{d x}+\left(1-k_{2}-\frac{L^{2}}{2 L^{2}}\right) S+\frac{a^{2}}{R^{2}} \frac{k_{2}}{\left(k_{2}-k_{1}\right)^{2}}\right. \tag{39}
\end{align*}
$$

Mote:

The method of reasoning used in these papers introduces discrepancies between the computed forces and the actual forces due to two trings:

1) The viscosity of the air is assamed to be zero with the consequent elimination of all viscous drag.

These discrepancies in the present state of the theory can probably only be estimated by comparison π ith experiment.
3) The transverse flow about any element of the ship is as.sumed to be the same as that about the corresponding portion of an infinite cylinder. This assumption is most accurate when $\frac{1}{\Gamma} \frac{d S}{d x}$
is small. It will represent most closely the corditions amidships $\left(\frac{1}{D} \frac{d S}{d x}=0\right)$. The largest disorepancies will occur near the blunt nose of the ship ($\frac{1}{D} \frac{d S}{d x}=\infty$) and the next largest near the tail, where $\frac{1}{D} \frac{d S}{d x}$ is finite but large.

Since even small discreqancies in forces near the ends may result in relatively large disorepancies in the bending momerts on the ship, it would seem to be very desirable to have some oomparison of the results of this aprroximate method with ar accurate computation of the forces on a shape approximating that of the ヨirship.

The theory of the potential flow about an ovary ellipsoid is so complete that it is possible (although tedious) to compute the a ctual force distribution along such a shape both for straight flight and steady turning.

It would seem that the comparison of the results of such a computation with the results of the approximate analysis given above would be of value in indicating the magnitude of the discrepancies involved.
L. B. Tuckerman.

Surriementary Note No. 1. Modifoaticn oi Dr Munn's formulae.

Tr. C. P. Eurgess has cilled my attention to the practicai disadvantege of an approimate load distribution which is not in equilibrium. By neglecting the added centrifugal forves in the caloulation of the lateral force on the fins Dr. Murk leaves an unbilanoed outrard force of $\frac{\hat{V}^{2}}{\Gamma} Q\left(k_{1}+k_{2} \sin ^{2} a\right)$. This makea no appresiable differerve in the resulting momerts or the ship but is inconvenient in practical computation, sinse it rreverts the check obtained oy cmputing both mays aiorg the hull.

This may be avoided by using the total certrifugal forse in calculating the fin load, i.e.
or

$$
\left(k_{z}-k_{1}\right) \sin 2 a=\frac{3 a}{R}\left(1+k_{1}+k_{2} \sin ^{2} a\right)
$$

Since a is small the second arproximation of its ralue
Will be sufficiently close for a numerical oheok. Then the total forces on the ship becoms:
a) at bo: outward

$$
\frac{0 V^{2}}{R} Q I / 2\left(x_{1}+\frac{D^{2}}{2 L^{2}}\right)
$$

b) at serter of rressure

$$
\frac{E V^{2}}{\mathrm{R}} \hat{Q}_{1}\left(1+k_{1}+k_{2} \sin 2 a\right)
$$

c) at stern outwrid

$$
\frac{\mathrm{Q}}{\mathrm{R}} \mathrm{~V}^{2} Q \cdot 1 / 2\left(\mathrm{k}_{1}+\frac{\mathrm{D}^{2}}{2 L^{2}}\right)
$$

and a force distributed along the ship with the resultant cutrard intensity:

$$
f=\frac{c V^{2}}{f}\left[\left\{a \left(1+k_{1}+k_{-} \sin ^{2} a^{\prime}-k_{2} x\left\{\frac{\alpha Q}{d x}+\left(1-k_{2}+k_{-} \sin a-\frac{D^{2}}{\partial L^{2}}\right) s\right]\right.\right.\right.
$$

Qupremenuay iote ito．2．Iinorerancy vetween Dr．Iunk＇s Theory

In computations for the ZEi－I，Mr．Burgess has noted some ais－ or apancy betreen Dr．Munk＇s theory ard N．P．L．Estimates based on modsi tests．He poirted out that it is at least partially eaplain－ ed by the neglect in Dr．Kunk＇s theory of the lateral resultant force on tie hull arising from vissosity．The N．P．L．results show

$$
\begin{aligned}
& \text { h }=\frac{\text { Force on rull }}{\text { Total force }}=\frac{3400}{9500}=.354 \\
& f=\frac{\text { Force on fins }}{\text { Total force }}=\frac{6300}{9500}=.546
\end{aligned}
$$

Tho laterai force on the hull is thus over $1 / 3$ the total force and would make a considerable change in the results．

It seems that the folloring method might give a someriat bet－ ter arproximation．Assume forces as inaicated in the diairam．

I上ジ equating moments：

$$
\frac{Q V^{2}}{R} Q(f+E n)=c V^{2} Q 1 / 2\left(k_{g}-k_{1}\right) \sin Z a_{1}
$$

or

$$
\left(r_{2}-r_{1}\right) \sin 2 a_{1}=\frac{2 a}{F}(f+\beta n)
$$

Where Dr. Mumy found

$$
\left(x_{a}-k_{y}\right) \sin 2 a_{c}=\frac{2 a}{h}
$$

then

$$
\begin{aligned}
& \frac{\sin 2 a_{1}}{\sin 2 a_{c}}=f+\beta h \\
& \beta=\frac{\frac{\sin 2 \alpha_{1}}{\sin }-f}{h}
\end{aligned}
$$

Burgess gives

$$
a_{1}=7^{0} 12^{\prime} ; a_{0}=3^{0} 45^{\prime}
$$

$\begin{gathered}\text { Substituting } \\ \text { values }\end{gathered} \quad \beta=\frac{\frac{.2487}{3207}-.646}{.354}=0.51$

The lateral forces on the hull have then apparently a resuitant applied about half way between the center of buoyancy and the center of pressure of the fin.

It would seem then that a recomputation by Dr. Nunk's metrod based on an angle of yaw of $7^{\circ} 121$ with the addition. of some reasonable distribution of lateral forces on the hull with a resultant at 0.51 mignt give a still closer aproximation to the actual forces in a steady turn.

Supplementary Note No. 3. Approximate Formulae for Lamb's Loaffivents.

In comparing airships of different fineness ratio the variation of Lamb's coefficients k_{1}, k_{2} and $k_{1}-k_{2}$ may not always be negligible, although this variation need not be accurately estimated. For stich cases it may be orth mile noting the linear approximations given on the accompanying figures. These cover the Whole range with a maximum error of 5% of the volume on the range $4<\frac{1}{\mathrm{D}}<\infty$ with a maximum error of $2 / \%$.

It is of course covious that in the range $4<\frac{L}{D}<\infty$ parabolic approximations mould give still closer values. For instance, in this range the approximation $k_{2}-k_{1}=1-1.53\left(\frac{N}{L}\right)^{3 \cdot 4}$ has 3 maximum error of less than 0. 3%. In view of the roughness of the other approximations involved the socuracy gained is probably not worth the extra labor.
L.B.T.

Fig.I

Fig. 3

$\propto \quad 0.00001 .0001 .000 \quad 0.000 \quad 0.000,0.000 \quad 0.0001 .0001 .000 \quad 0.000$ $\begin{array}{llllllllllllllll}9.97 & 0.1003 & 0.060 .0 .950 & 0.010 & 0.021 & 0.030 & -0.009 & 0.939 & 0.930 & 0.019\end{array}$ $9.020 .11000 .9540 .945 \quad 0.003 \cdot 0.034 \cdot 0.033-0.008 \quad 0.930 \quad 0.211 \quad 0.019$ $8.010 .1248 \quad 0.3450 .938 \quad 0.007 \quad 0.029 \quad 0.037-0.008 \quad 0.916 \quad 0.800 \quad 0.0 .6$ 6.97 0.1435 0.933
0.928
$0.0050 .036 \quad 0.043-0.007 \quad 0.897 \quad 0.885$
0.013 6.01 0.1664 0.918
0.917 $+0.001$
$0.0450 .050-0.005$
0.87
$0.857+0.006$ $4.990 .2004,0.895: 0.900-0.0050 .0590 .050-0.001 \quad 0.8350 .810,-0.003$ $3.99: 0.25060 .860 \cdot 0.875-0.0150 .0820 .075+0.0070 .7780 .800-0.022$ $2.990 .33440 .8030 .833-0.030: 0.122: 0.100+0.0220 .081 \quad 0.732-0.051$ Approximate values of Lamb's coefficients for prolate spheroid, Eetween $k_{D}{\underset{D}{2}}^{k_{2}}=4$ and $k_{2} k_{1}$. Maximum error is 0.02 of volure.

 $\Rightarrow 0.0000$ i. $0001.000^{-} \quad 0.000^{\prime}, 0.000,0.000 \quad 0.0001 .0001 .000 \quad 0.000$ $3.970 .10030 .950,0.950 \quad 0.010 .0 .021,0.050-0.020 \quad 0.939 .0 .800 .0 .000$ $3.030 .11030 .954 \quad 0.945 \quad 0.009 \quad 0.024,0.055-0.031 \quad 0.050 .0 .880 \quad 0.041$ E.01 0.1248'0.045, 0.938 0.007.0.029, 0.062-0.033 0.0160.873 0.042 $6.57,0.1435,0.933 ; 0.928 \quad 0.005 ; 0.035: 0.072-0.0360 .897 \quad 0.857 \quad 0.040$ $6.01: 0.1664: 0.918: 0.917+0.0010 .0450 .083-0.038: 0.8730 .834 \quad 0.038$ $1.99,0.2004,0.835,0.900-0.005 \quad 0.05910 .100-0.041 \quad 0.8350 .800 \quad 0.036$
 $0.58: 0.3344,0.803,0.835,-0.030 \quad 0.122: 0.157-0.0450 .6810 .666: 0.015$ $-2.51,0.3581,0.763,0.80,-0.038!0.155^{\prime} 0.139-0.0430 .607 ; 0.602^{2}+0.005$
 $1.50\left[0.6657 \quad 0.621,0.617-0.04610 .3050 .333-0.028 \quad 0.316^{\prime} 0.333-0.017\right.$ $1.0011 .0000: 0.500,0.500 \mid 0.000,0.500,0.500-0.0000 .00010 .000,0.000$ Approximate values of Lamo's coefficients k_{1}, k_{2} and $k_{2}-k_{1} f(y$ rrolate spheroid. Error less than 0.05 part of volume cver rhole range

Fie. 3

Fig .4

Fig. 5

Fig. 6

Fis 5

Fig. 8

$$
=\mathrm{Es} .7 \text { ard } \mathrm{E}
$$

Fis゙.20
Fjosie and 10

