901 research outputs found
Unconventional Metallic Magnetism in LaCrSb{3}
Neutron-diffraction measurements in LaCrSb{3} show a coexistence of
ferromagnetic and antiferromagnetic sublattices below Tc=126 K, with ordered
moments of 1.65(4) and 0.49(4) Bohr magnetons per formula unit, respectively
(T=10 K), and a spin reorientation transition at ~95 K. No clear peak or step
was observed in the specific heat at Tc. Coexisting localized and itinerant
spins are suggested.Comment: PRL, in pres
K-edge X-ray absorption spectra in transition metal oxides beyond the single particle approximation: shake-up many body effects
The near edge structure (XANES) in K-edge X-ray absorption spectroscopy (XAS)
is a widely used tool for studying electronic and local structure in materials.
The precise interpretation of these spectra with the help of calculations is
hence of prime importance, especially for the study of correlated materials
which have a complicated electronic structure per se. The single particle
approach, for example, has generally limited itself to the dominant dipolar
cross-section. It has long been known however that effects beyond this approach
should be taken into account, both due to the inadequacy of such calculations
when compared to experiment and the presence of shake-up many-body satellites
in core-level photoemission spectra of correlated materials. This effect should
manifest itself in XANES spectra and the question is firstly how to account for
it theoretically and secondly how to verify it experimentally. By using
state-of-the-art first principles electronic structure calculations and 1s
photoemission measurements we demonstrate that shake-up many-body effects are
present in K-edge XAS dipolar spectra of NiO, CoO and CuO at all energy scales.
We show that shake-up effects can be included in K-edge XAS spectra in a simple
way by convoluting the single-particle first-principles calculations including
core-hole effects with the 1s photoemission spectra. We thus describe all
features appearing in the XAS dipolar cross-section of NiO and CoO and obtain a
dramatic improvement with respect to the single-particle calculation in CuO.
These materials being prototype correlated magnetic oxides, our work points to
the presence of shake-up effects in K-edge XANES of most correlated transition
metal compounds and shows how to account for them, paving the way to a precise
understanding of their electronic structure.Comment: 6 pages, 4 picture
Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures
The electronic structure of C_(4N+2) carbon rings exhibits competing
many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls
instability at large sizes. This leads to possible ground state structures with
aromatic, bond angle or bond length alternated geometry. Highly accurate
quantum Monte Carlo results indicate the existence of a crossover between C_10
and C_14 from bond angle to bond length alternation. The aromatic isomer is
always a transition state. The driving mechanism is the second-order
Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure
Design principles for the future internet architecture
Design principles play a central role in the architecture of the Internet as driving most engineering decisions at conception level and operational level. This paper is based on the EC Future Internet Architecture (FIArch) Group results and identifies some of the design principles that we expect to govern the future architecture of the Internet. We believe that it may serve as a starting point and comparison for most research and development projects that target the so-called Future Internet Architecture
A novel form of recessive limb girdle muscular dystrophy with mental retardation and abnormal expression of alpha-dystroglycan
Cataloged from PDF version of article.The limb girdle muscular dystrophies are a heterogeneous group of conditions characterized by proximal muscle weakness and disease onset ranging from infancy to adulthood. We report here eight patients from seven unrelated families affected by a novel and relatively mild form of autosomal recessive limb girdle muscular dystrophy (LGMD2) with onset in the first decade of life and characterized by severe mental retardation but normal brain imaging. Immunocytochemical studies revealed a significant selective reduction of α-dystroglycan expression in the muscle biopsies. Linkage analysis excluded known loci for both limb girdle muscular dystrophy and congenital muscular dystrophies in the consanguineous families. We consider that this represents a novel form of muscular dystrophy with associated brain involvement. The biochemical studies suggest that it may belong to the growing number of muscular dystrophies with abnormal expression of α-dystroglycan. © 2003 Published by Elsevier B.V
Alemtuzumab is safe and effective as immunosuppressive treatment for aplastic anemia and single-lineage marrow failure: a pilot study and a survey from EBMT WPSAA.
Electric control of magnetism at the Fe/BaTiO3 interface
Interfacial magnetoelectric coupling is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO3 system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BaTiO3 dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high-resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial magnetoelectric coupling in the Fe/BaTiO3 system. At this interface, an ultrathin oxidized iron layer exists, whose magnetization can be electrically and reversibly switched on and off at room temperature by reversing the BaTiO3 polarization. The suppression/recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BaTiO3 produces on the exchange coupling constants in the interfacial-oxidized Fe layer. The observed giant magnetoelectric response holds potential for optimizing interfacial magnetoelectric coupling in view of efficient, low-power spintronic devices
Role and optimization of the active oxide layer in TiO<sub>2</sub>-based RRAM
TiO2 is commonly used as the active switching layer in resistive random access memory. The electrical characteristics of these devices are directly related to the fundamental conditions inside the TiO2 layer and at the interfaces between it and the surrounding electrodes. However, it is complex to disentangle the effects of film “bulk” properties and interface phenomena. The present work uses hard X-ray photoemission spectroscopy (HAXPES) at different excitation energies to distinguish between these regimes. Changes are found to affect the entire thin film, but the most dramatic effects are confined to an interface. These changes are connected to oxygen ions moving and redistributing within the film. Based on the HAXPES results, post-deposition annealing of the TiO2 thin film was investigated as an optimisation pathway in order to reach an ideal compromise between device resistivity and lifetime. The structural and chemical changes upon annealing are investigated using X-ray absorption spectroscopy and are further supported by a range of bulk and surface sensitive characterisation methods. In summary, it is shown that the management of oxygen content and interface quality is intrinsically important to device behavior and that careful annealing procedures are a powerful device optimisation technique
Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals
We discuss the adiabatic self-trapping of small polarons within the density
functional theory (DFT). In particular, we carried out plane-wave
pseudo-potential calculations of the triplet exciton in NaCl and found no
energy minimum corresponding to the self-trapped exciton (STE) contrary to the
experimental evidence and previous calculations. To explore the origin of this
problem we modelled the self-trapped hole in NaCl using hybrid density
functionals and an embedded cluster method. Calculations show that the
stability of the self-trapped state of the hole drastically depends on the
amount of the exact exchange in the density functional: at less than 30% of the
Hartree-Fock exchange, only delocalized hole is stable, at 50% - both
delocalized and self-trapped states are stable, while further increase of exact
exchange results in only the self-trapped state being stable. We argue that the
main contributions to the self-trapping energy such as the kinetic energy of
the localizing charge, the chemical bond formation of the di-halogen quasi
molecule, and the lattice polarization, are represented incorrectly within the
Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl
- …
