1,018 research outputs found
Evolution of Cooperation and Coordination in a Dynamically Networked Society
Situations of conflict giving rise to social dilemmas are widespread in
society and game theory is one major way in which they can be investigated.
Starting from the observation that individuals in society interact through
networks of acquaintances, we model the co-evolution of the agents' strategies
and of the social network itself using two prototypical games, the Prisoner's
Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new
ones, we find that cooperation and coordination can be achieved through the
self-organization of the social network, a result that is non-trivial,
especially in the Prisoner's Dilemma case. The evolution and stability of
cooperation implies the condensation of agents exploiting particular game
strategies into strong and stable clusters which are more densely connected,
even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea
Social Dilemmas and Cooperation in Complex Networks
In this paper we extend the investigation of cooperation in some classical
evolutionary games on populations were the network of interactions among
individuals is of the scale-free type. We show that the update rule, the payoff
computation and, to some extent the timing of the operations, have a marked
influence on the transient dynamics and on the amount of cooperation that can
be established at equilibrium. We also study the dynamical behavior of the
populations and their evolutionary stability.Comment: 12 pages, 7 figures. to appea
Preliminary Ground Motion Measurements at LNF Site for the Super B Project
TUPEA067International audienceFollowing previous measurements, more detailed preliminary ground motion measurements have been performed at the LNF site for the Super B project site characterization. First, results of vertical ground motion measurements done during 18 hours are shown in order to get an idea of the evolution of the ground motion amplitude with time. Secondly, measurements of ground motion (in the 3 directions of space) were performed at different locations on surface in order to evaluate and to compare the influence of various vibration sources. Then, results of ground motion coherence measured for different distances at two locations close to each other but with soft and rigid floor are compared. These measurements are also compared to the ones done in the ATF2 beam line where a special floor was built for stability. By this way, the results reveal that the LNF is a good site to use ground motion coherence properties for stability like it has been done for ATF2
Evolution of Coordination in Social Networks: A Numerical Study
Coordination games are important to explain efficient and desirable social
behavior. Here we study these games by extensive numerical simulation on
networked social structures using an evolutionary approach. We show that local
network effects may promote selection of efficient equilibria in both pure and
general coordination games and may explain social polarization. These results
are put into perspective with respect to known theoretical results. The main
insight we obtain is that clustering, and especially community structure in
social networks has a positive role in promoting socially efficient outcomes.Comment: preprint submitted to IJMP
Minimal length in quantum space and integrations of the line element in Noncommutative Geometry
We question the emergence of a minimal length in quantum spacetime, comparing
two notions that appeared at various points in the literature: on the one side,
the quantum length as the spectrum of an operator L in the Doplicher
Fredenhagen Roberts (DFR) quantum spacetime, as well as in the canonical
noncommutative spacetime; on the other side, Connes' spectral distance in
noncommutative geometry. Although on the Euclidean space the two notions merge
into the one of geodesic distance, they yield distinct results in the
noncommutative framework. In particular on the Moyal plane, the quantum length
is bounded above from zero while the spectral distance can take any real
positive value, including infinity. We show how to solve this discrepancy by
doubling the spectral triple. This leads us to introduce a modified quantum
length d'_L, which coincides exactly with the spectral distance d_D on the set
of states of optimal localization. On the set of eigenstates of the quantum
harmonic oscillator - together with their translations - d'_L and d_D coincide
asymptotically, both in the high energy and large translation limits. At small
energy, we interpret the discrepancy between d'_L and d_D as two distinct ways
of integrating the line element on a quantum space. This leads us to propose an
equation for a geodesic on the Moyal plane.Comment: 29 pages, 2 figures. Minor corrections to match the published versio
Vibration Budget for SuperB
International audienceWe present a vibration budget for the SuperB accelerator. This includes ground motion data, motion sensitivity of machine components, and beam feedback system requirements
Learning and innovative elements of strategy adoption rules expand cooperative network topologies
Cooperation plays a key role in the evolution of complex systems. However,
the level of cooperation extensively varies with the topology of agent networks
in the widely used models of repeated games. Here we show that cooperation
remains rather stable by applying the reinforcement learning strategy adoption
rule, Q-learning on a variety of random, regular, small-word, scale-free and
modular network models in repeated, multi-agent Prisoners Dilemma and Hawk-Dove
games. Furthermore, we found that using the above model systems other long-term
learning strategy adoption rules also promote cooperation, while introducing a
low level of noise (as a model of innovation) to the strategy adoption rules
makes the level of cooperation less dependent on the actual network topology.
Our results demonstrate that long-term learning and random elements in the
strategy adoption rules, when acting together, extend the range of network
topologies enabling the development of cooperation at a wider range of costs
and temptations. These results suggest that a balanced duo of learning and
innovation may help to preserve cooperation during the re-organization of
real-world networks, and may play a prominent role in the evolution of
self-organizing, complex systems.Comment: 14 pages, 3 Figures + a Supplementary Material with 25 pages, 3
Tables, 12 Figures and 116 reference
Dose-dependent effects of L-Arginine on PROP bitterness intensity and latency and characteristics of the chemical interaction between PROP and L-Arginine
Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the -NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a 'carrier' of various bitter molecules in saliva
- …
