7,081 research outputs found

    Structural anomalies for a three dimensional isotropic core-softened potential

    Full text link
    Using molecular dynamics simulations we investigate the structure of a system of particles interacting through a continuous core-softened interparticle potential. We found for the translational order parameter, t, a local maximum at a density ρtmax\rho_{t-max} and a local minimum at ρtmin>ρtmax\rho_{t-min} > \rho_{t-max}. Between ρtmax\rho_{t-max} and ρtmin\rho_{t-min}, the tt parameter anomalously decreases upon pressure. For the orientational order parameter, Q6Q_6, was observed a maximum at a density ρtmax<ρQmax<ρtmin\rho_{t-max}< \rho_{Qmax} < \rho_{t-min}. For densities between ρQmax\rho_{Qmax} and ρtmin\rho_{t-min}, both the translational (t) and orientational (Q6Q_6) order parameters have anomalous behavior. We know that this system also exhibits density and diffusion anomaly. We found that the region in the pressure-temperature phase-diagram of the structural anomaly englobes the region of the diffusion anomaly that is larger than the region limited by the temperature of maximum density. This cascade of anomalies (structural, dynamic and thermodynamic) for our model has the same hierarchy of that one observed for the SPC/E water.Comment: 19 pages, 8 figure

    Stochastic blockmodel approximation of a graphon: Theory and consistent estimation

    Full text link
    Non-parametric approaches for analyzing network data based on exchangeable graph models (ExGM) have recently gained interest. The key object that defines an ExGM is often referred to as a graphon. This non-parametric perspective on network modeling poses challenging questions on how to make inference on the graphon underlying observed network data. In this paper, we propose a computationally efficient procedure to estimate a graphon from a set of observed networks generated from it. This procedure is based on a stochastic blockmodel approximation (SBA) of the graphon. We show that, by approximating the graphon with a stochastic block model, the graphon can be consistently estimated, that is, the estimation error vanishes as the size of the graph approaches infinity.Comment: 20 pages, 4 figures, 2 algorithms. Neural Information Processing Systems (NIPS), 201

    Viable entanglement detection of unknown mixed states in low dimensions

    Full text link
    We explore procedures to detect entanglement of unknown mixed states, which can be experimentally viable. The heart of the method is a hierarchy of simple feasibility problems, which provides sufficient conditions to entanglement. Our numerical investigations indicate that the entanglement is detected with a cost which is much lower than full state tomography. The procedure is applicable to both free and bound entanglement, and involves only single copy measurements.Comment: 8 pages, 9 figures, 4 table

    Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Get PDF
    Experimental Fowler-Nordheim plots taken from orthodoxly behaving carbon nanotube (CNT) field electron emitters are known to be linear. This shows that, for such emitters, there exists a characteristic field enhancement factor (FEF) that is constant for a range of applied voltages and applied macroscopic fields FMF_\text{M}. A constant FEF of this kind can be evaluated for classical CNT emitter models by finite-element and other methods, but (apparently contrary to experiment) several past quantum-mechanical (QM) CNT calculations find FEF-values that vary with FMF_\text{M}. A common feature of most such calculations is that they focus only on deriving the CNT real-charge distributions. Here we report on calculations that use density functional theory (DFT) to derive real-charge distributions, and then use these to generate the related induced-charge distributions and related fields and FEFs. We have analysed three carbon nanostructures involving CNT-like nanoprotrusions of various lengths, and have also simulated geometrically equivalent classical emitter models, using finite-element methods. We find that when the DFT-generated local induced FEFs (LIFEFs) are used, the resulting values are effectively independent of macroscopic field, and behave in the same qualitative manner as the classical FEF-values. Further, there is fair to good quantitative agreement between a characteristic FEF determined classically and the equivalent characteristic LIFEF generated via DFT approaches. Although many issues of detail remain to be explored, this appears to be a significant step forwards in linking classical and QM theories of CNT electrostatics. It also shows clearly that, for ideal CNTs, the known experimental constancy of the FEF value for a range of macroscopic fields can also be found in appropriately developed QM theory.Comment: A slightly revised version has been published - citation below - under a title different from that originally used. The new title is: "Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Equation of state of charged colloidal suspensions and its dependence on the thermodynamic route

    Full text link
    The thermodynamic properties of highly charged colloidal suspensions in contact with a salt reservoir are investigated in the framework of the Renormalized Jellium Model (RJM). It is found that the equation of state is very sensitive to the particular thermodynamic route used to obtain it. Specifically, the osmotic pressure calculated within the RJM using the contact value theorem can be very different from the pressure calculated using the Kirkwood-Buff fluctuation relations. On the other hand, Monte Carlo (MC) simulations show that both the effective pair potentials and the correlation functions are accurately predicted by the RJM. It is suggested that the lack of self-consistency in the thermodynamics of the RJM is a result of neglected electrostatic correlations between the counterions and coions

    Genuine Multipartite Entanglement in Quantum Phase Transitions

    Get PDF
    We demonstrate that the Global Entanglement (GE) measure defined by Meyer and Wallach, J. Math. Phys. 43, 4273 (2002), is maximal at the critical point for the Ising chain in a transverse magnetic field. Our analysis is based on the equivalence of GE to the averaged linear entropy, allowing the understanding of multipartite entanglement (ME) features through a generalization of GE for bipartite blocks of qubits. Moreover, in contrast to GE, the proposed ME measure can distinguish three paradigmatic entangled states: GHZNGHZ_{N}, WNW_{N}, and EPRN/2EPR^{\otimes N/2}. As such the generalized measure can detect genuine ME and is maximal at the critical point.Comment: 4 pages, 3 figures. Replaced with final published versio
    corecore