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We demonstrate that the global-entanglement �GE� measure defined by Meyer and Wallach �J. Math. Phys.
43, 4273 �2002�� is maximal at the critical point for the Ising chain in a transverse magnetic field. Our analysis
is based on the equivalence of GE to the averaged linear entropy, allowing an understanding of multipartite
entanglement �ME� features through a generalization of GE for bipartite blocks of qubits. Moreover, in contrast
to GE, the proposed ME measure can distinguish three paradigmatic entangled states: GHZN �Greenberger-
Horne-Zeilinger�, WN, and EPR�N/2. As such the generalized measure can detect a genuine ME and is maximal
at the critical point.
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Entanglement is a correlation of exclusively quantum na-
ture present �in principle� in any set of postinteracting quan-
tum systems �1�. As such, multipartite entanglement �ME� is
expected to play a key role on quantum-phase transition
�QPT� phenomena in the same way that classical �statistical�
correlation does on classical phase transitions �2,3�. In ordi-
nary phase transitions, at the critical point, a nonzero order
parameter characterizes a long-range correlation �given by
the correlation length divergence�. In the same way, in QPTs
the ME is expected to be maximal at the critical point, in the
sense that all the system parties would be entangled with
each other �2�. However, this conjecture could not be proved
in general either by measures of pairwise entanglement or by
the proposed ME measures. Even after a considerable effort
a deep understanding of multipartite-entangled states �MES�
is lacking. Thus it is still a great challenge to capture the
essential features of ME from a conceptual point of view as
well as from a quantitative approach, defining a measure that
among its other properties is able to distinguish MES �4,5�.

Indeed, concerning the legitimate quantum correlations in
QPTs it would certainly be important to know exactly what
kind of entanglement we should expect to be maximal at the
critical point. The great majority of efforts trying to answer
this question made use of two kinds of bipartite entangle-
ment measures, both calculated for spin-1 /2 lattice models
such as the Ising model in a transverse magnetic field �6�.
The first measure, namely the pairwise entanglement �con-
currence� between two spins in the chain, was studied in
Refs. �2,3�. The second measure, the entropy of entangle-
ment between one part of the chain �a block of L spins� and
the rest of the chain, was investigated in Refs. �2,7,8�. Some
candidates for ME measures were also evaluated in systems
exhibiting QPTs �9–11�. Nevertheless, none of the entangle-
ment measures employed in the references cited are maximal
at the critical point except the single site entropy for the Ising
model �2� in the thermodynamical limit and the localizable
entanglement �11� for an Ising chain with 14 spins. Further-

more, in Refs. �2,3� the authors have independently shown
that bipartite entanglement vanishes when the distance be-
tween the two spins is greater than two lattice sites �12�. This
is not expected since long-range quantum correlations should
be present at the critical point. It was then suggested that
bipartite entanglement at the critical point should be de-
creased in order to increase ME due to entanglement sharing
�2�. In other words, ME only appears at the expense of pair-
wise entanglement, and at the critical point we should expect
a genuine MES.

In this paper we demonstrate that the global entanglement
�GE� introduced in Ref. �13� indeed captures the essential
point to be maximal at the critical point for the Ising model
in a transverse magnetic field in the thermodynamical limit.
We also prove that there exists an interesting relation be-
tween the GE, the von Neumann entropy, linear entropy
�LE�, and 2-tangle �14–16�, showing that they are all equiva-
lent to detect QPTs. Furthermore, this relation helps us to
understand the results obtained in Ref. �2�, as outlined in the
previous paragraph, and suggests that they are not unique to
the Ising model but common to all MES with translational
invariance. In addition to this, we generalize the GE and
propose a ME measure that is also maximal at the critical
point for the Ising model and can detect genuine MES, and
in contrast to GE furnishes different values for the entangle-
ment of the GHZN, �Greenberger-Horne-Zeilinger�, WN, and
EPR�N/2 states, thus being able to distinguish between MES.

For a N qubit system �spin-1 /2 chain� it was noted that
GE is simply related to the N single qubit purities �16–18� by

EG
�1� = 2 −

2

N
�
j=1

N

Tr�� j
2� =

1

N
�
j=1

N

SL�� j� = �SL� , �1�

where GE is hereafter identified as EG
�1� ,� j =Tr j̄��	 is the jth

qubit reduced-density matrix obtained by tracing out the
other j̄ qubits, and SL�� j�= �d / �d−1���1−Tr�� j

2�� is the stan-
dard definition of LE. This relation shows that EG

�1� is just the
mean of LE. It was also noted in Refs. �16,19� that
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EG
�1� =

1

N
�
j=1

N

� j,rest = ��� , �2�

where � j,rest=C2 is the 2-tangle �14,16� �the square of con-
currence C� �20�. Both LE and the 2-tangle can thus be used
to quantify the entanglement between any block bipartition
of a system of N qubits. �They quantify the entanglement
between one qubit j and the rest of the N−1 qubits of the
chain �16�.� The proof of Eq. �2� is based on the Schmidt
decomposition �21� that also allows us to use for pure sys-
tems the reduced von Neumann entropy, SV�� j� j̄��=−Trj� j̄�
��� j� j̄�logd�� j� j̄��� as a good bipartite-entanglement measure
�22�. Here d=min�dim H j ,dim H j̄	 and dim H j� j̄� is the

Hilbert-space dimension of subsystem j� j̄�. Recalling that SV

is bounded from below by SL and employing Eqs. �1� and �2�
we obtain the following important relation:

EG
�1� = ��� = �SL� � �SV� , �3�

which states that the GE is nothing but the mean LE of single
qubits with the rest of the chain. Furthermore, the GE is also
equal to the mean 2-tangle and a lower bound for the mean
von Neumann entropy. An immediate consequence of this
result shows up when we deal with linear chains with trans-
lational invariance. This implies that �SL�=SL�� j� and that
�SV�=SV�� j�. Hence, Eq. �3� becomes EG

�1�=SL�� j��SV�� j�.
Since SL�� j� and SV�� j� have the same concavity and both
entropies attain their maximal value for a maximally mixed
state this last relation shows that EG

�1� is as efficient as the
linear and the von Neumann entropies to detect QPTs. In
Ref. �2� the authors used SV and in Ref. �9� EG

�1� was em-
ployed to detect QPTs in the Ising model. Needless to say,
both works arrived at the same results for a given range of
parameters, notwithstanding their use of different entangle-
ment measures, which by that time were thought to be unre-
lated.

Despite its success to detect the Greenberger-Horne-
Zeilinger �GHZ� state �19,23�, EG

�1� sometimes fails to distin-
guish different multipartite states. This is best understood if
we study EG

�1� for three paradigmatic multipartite states. The
first is 
GHZN�= �1/�2��
0��N+ 
1��N�, where 
0��N and

1��N represent N tensor products of 
0� and 
1� respectively.
The second is a tensor product of N /2 Bell states �18�,

EPRN�= 
�+��N/2, where 
�+�= �1/�2��
00�+ 
11��. This
state is obviously not a MES. Only the pairs of qubits
�2j–1,2j�, where j=1,2 ,… ,N, are entangled. Nevertheless,
for both states EG

�1�=1. The last is the W state �4�, 
WN�
= �1/�N�� j=1

N 
00¯1 j¯00�. The state 
00¯1 j¯00� repre-
sents N qubits in which the jth is 
1� and the others are 
0�.
As shown in Ref. �13�, EG

�1��WN�=4�N−1� /N2.
We now present a generalization of GE. There are three

main features of this approach. First, it becomes clear that we
have different classes of ME measures, where EG

�1� is the first
one. Second, the first nontrivial class, EG

�2�, furnishes different
values for the three states considered above. Third, it gives
new insights into the study of QPT and ME.

In order to define EG
�2� we need the following function:

G�2,l� �
4

3
1 −

1

N − l
�
j=1

N−l

Tr�� j,j+l
2 �� , �4�

where � j,j+l is the density matrix of qubits j and j+ l obtained
by tracing out the other N−2 qubits. The index 0� l�N is
the distance in the chain of two qubits and 4/3 is a normal-
ization constant assuring that G�2, l��1. Of interest here are
two quantities that can be considered ME measures in the
same sense that EG

�1� is:

G�2,1� �
4

3
1 −

1

N − 1 �
j=1

N−1

Tr�� j,j+1
2 �� , �5�

and

EG
�2� =

1

N − 1 �
l=1

N−1

G�2,l� . �6�

We can interpret G�2,1� as the mean LE of all two-qubit
nearest neighbors with the rest of the chain. Similar interpre-
tations are valid for the others G�2, l�. EG

�2� is the mean of all
G�2, l� and it gives the mean LE of all two qubits, indepen-
dent of their distance, with the rest of the chain �24�. To
define EG

�3� we need the function G�3, l1 , l2� with one more
parameter, since now we can have different distances be-
tween the three qubits of the reduced state. A complete
analysis of this ME measure and its usefulness to detect
MES is discussed elsewhere �25�.

Table I shows the quantities given by Eqs. �5� and �6� for
GHZN ,EPRN, and WN. We note that due to translational sym-
metry, G�2,1� and EG

�2� are identical for GHZN and WN. It is
worthy of mention that depending on the value of N the
states are classified differently by G�2,1�. A similar behavior
is observed for EG

�2� �24�. In this case, however, EPRN is the
most entangled state for long chains. The reason for that lies
in the definition of EG

�2�. For EPRN , G�2, l�=1 for any l	2.
Thus, since EG

�2� is the average of all G�2, l�, for long chains
G�2,1� does not contribute significantly and EG

�2�→1.
It is worth noting that even at the thermodynamical limit,

N→
 , EG
�2�, and G�2,1� still distinguish the three states.

However, the ordering of the states is different. As already
explained, this is due to the contribution of G�2, l� , l	2, in
the calculation of EG

�2��EPRN�.

TABLE I. Comparison among the three paradigmatic states.

EG
�1� G�2,1� EG

�2�

GHZN 1 2/3 2/3

EPRN 1
N−2

2�N−1�
�2N−1��N−2�

2�N−1�2

WN

4�N−1�

N2

16�N−2�

3N2

16�N−2�

3N2
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Now we specify to the one-dimensional Ising model in a
transverse magnetic field, which is given by the following
Hamiltonian:

H = ��
i=1

N

�i
x�i+1

x + �
i=1

N

�i
z, �7�

where i represents the ith qubit, � is a free parameter related
to the inverse strength of the magnetic field, and we work in
the thermodynamical limit. We assume periodic boundary
conditions: �N+1=�1. As we have shown, for a system with
translational symmetry GE is nothing but the LE of one spin
with the rest of the chain. We only need, then, the LE to
obtain the GE. For that purpose we must calculate the single-
qubit �or single-site� reduced-density matrix that is obtained
from the two-qubits �two-sites� reduced-density matrix. It is
a 4�4 matrix and can be written as

�ij = Tr ij��� =
1

4
�
,�

p��i


� � j
�, �8�

where � is the broken-symmetry ground state in the thermo-
dynamical limit and p�=Tr��i

� j
��ij�= ��i

� j
��. Tr ij is the

partial trace over all degrees of freedom except the spins at
sites i and j ,�i

 is the Pauli matrix acting on the site i , ,�
=0,x ,y ,z where �0 is the identity matrix, and p� is real.
Therefore, all we need are the ground state two-point corre-
lation functions �CFs�. Using symmetry arguments for the
ground state �2� the only nonzero CFs are
p00, pxx , pyy , pzz , p0x= px0 , p0z= pz0, and pxz= pzx. Due to
normalization p00=1 and a direct calculation gives pxz= pzx
=0 for ��1. On the other hand, the Schwartz inequality
necessarily gives 0� 
pxz
� 
��i

x���i
z�
, thus allowing that the

lower and upper bounds for entanglement be calculated for
��1. We plot the upper bound for entanglement by taking
pxz=0. By continuity the true value for entanglement must
show a similar behavior.

Those CFs have already been calculated �6�, and we just
highlight the main results. The two-point CFs and the mean
values of �x and �z are

��1
x�l

x� = �
g�− 1� g�− 2� ¯ g�− l�
g�0� g�− 1� ¯ g�− l + 1�
] ] � ]

g�l − 2� g�l − 3� ¯ g�− 1�
� , �9�

��1
y�l

y� = �
g�1� g�0� ¯ g�− l + 2�
g�2� g�1� ¯ g�− l + 3�
] ] � ]

g�l� g�l − 1� ¯ g�1�
� , �10�

where ��1
z�l

z�= ��1
z�2−g�l�g�−l� , ��1

z�=g�0�, and ��1
x�=0 for

��1 or ��1
x�= �1−�−2�1/8 for ��1. Here g�l�=L�l�+�L�l

+1� ,L�l�= �1/���0
�dkcos�kl� / �1+�2+2� cos�k��, and l	1

is the lattice-site distance between two qubits. By tracing out
one of the qubits we obtain the single-qubit density matrix,
which allows us to obtain EG

�1� as a function of �. This is
shown in Fig. 1. As a matter of fact EG

�1� is maximal �with a

singular derivative� at the critical point �=1. For compari-
son, in Fig. 1 we plot SV�� j�, which was already shown to be
also maximal at the critical point for the broken-symmetry
state �2�. We emphasize that these measures quantify en-
tanglement in the global system by measuring how mixed the
subsystems are. The physical meaning behind studying “mix-
edness” lies in the fact that the more entangled two sub-
systems are the more mixed their reduced-density matrix
should be �9,18�. However, in a many-body system there are
many ways in which one could divide the global system into
subsystems. The first nontrivial generalization is to study the
LE of two sites with the rest of the chain. Using �ij we can
calculate G�2, l� for the Ising model �Fig. 2�. It has a similar
behavior to EG

�1�, since it is also maximal �with a singular
derivative� at the critical point. This feature demonstrates
that both a pair of nearest-neighbors sites and the sites them-
selves are maximally entangled with the rest of the chain at
the critical point. But this is not unique to nearest neighbors
as shown in Fig. 3, where G�2,1� , G�2,15�, and EG

�2�

= �1/15��i=1
15 G�2, i� is plotted. G�2,15� is also maximal at the

critical point indicating that in a QPT entanglement sharing
at the critical point is favored by an increase of all types of
MEs. Moreover, Fig. 3 shows that G�2,15� is only slightly

different from EG
�2�=

1

15
�i=1

15 G�2, i�. This is due to the rapid

convergence of G�2, l� as l is increased. At the critical point
liml→
 G�2, l� is 0.675, and thus higher than the values for

FIG. 1. �Color online� von Neumann entropy �dashed curve� and
GE/LE �solid curve� as a function of �.

FIG. 2. �Color online� EG
�1� �solid curve� and G�2,1� �dashed

curve� as a function of �. Both quantities are maximal at the critical
point �=1.
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GHZN ,EPRN, and WN, we obtained in the thermodynamical
limit, indicating thus a genuine MES. We also note that in
addition to EG

�1� ,G�2, l�, and EG
�2� all being maximal at the

critical point, EG
�1��EG

�2� for every value of �. However, an
interesting change of ordering for EG

�1� and G�2,1� occurs
around the critical point. For ��1,EG

�1��G�2,1�, but for �

�1,EG
�1��G�2,1�. Thus one type of ME is favored in detri-

ment to the others, depending on the system phase. Also, the
fact that at the critical point both EG

�1� and EG
�2� are maximal

indicates entanglement sharing, such that all the sites of the
chain are strongly �quantum� correlated. Of course this state-
ment is true only if EG

�m� is also shown to be maximal for any
2�m�N−1 �all possible partitions�. Furthermore, the fact
that G�2, l� always increases as l→
 at the critical point
suggests a kind of diverging entanglement length. However,
its precise definition demands a careful calculation of the
scaling of entanglement such as in Refs. �7,9�. These points
are left for further investigation �25�.

In conclusion we have demonstrated that for an infinite
Ising chain both EG

�1� and its generalization, EG
�2�, are maximal

at the critical point. Furthermore, EG
�2� as defined here is able

to detect a genuine ME. We note that the behavior of the ME
measures presented here for an infinite chain is in agreement
with the localizable entanglement calculated for a finite �N
=14� Ising chain for the broken-symmetry state �11�. Yet our
results were obtained in a relatively simpler fashion and
could be used to infer a genuine ME for systems where the
localizable entanglement has failed to detect the QPT �26�.
Finally, our results reinforced the conjecture of Osborne and
Nielsen �5� that at the critical point ME should be high due
to entanglement sharing, to the detriment of bipartite en-
tanglement.
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