492 research outputs found

    Lightweight construction ceramic composites based of pelletized fly ash aggregate

    Get PDF
    As coal combustion byproduct fly ash represents a risk for environment: direct ash emission from open land-fills causes pollution of air, soil and water. The solution for this severe pollution problem is fly ash reapplication in various construction ceramic composite materials. Although pelletization of waste powdery material is a known technique in the production of artificial aggregates, it still has not been widely used in construction sector. Here investigated cold-bonded fly ash aggregate was produced in semi-industrial pelletizing device. The fly ash particles were bonded with water-glass (Sodium silicate - Na2SiO3) and used as substitution for aggregate in Portland cement based composite. Half of the produced lightweight aggregate was submitted to thermal treatment and afterwards applied in the construction composite in the same ration as in the case of cold-bonded pellets. The performance characteristics of two types of lightweight composites were mutually compared and afterwards correlated with characteristics of normal-weight concrete. Compressive strength, modulus of elasticity and tensile strength were used as represents of the composites mechanical behavior. Mineral constituents of fly ash pellets were analyzed by means of X-ray diffraction analysis, differential thermal analysis was applied in crystalline phase investigation, and scanning electron microscopy in microstructural analysis. The leaching behavior and environmental impact of hazardous elements were also analyzed. It was concluded that content of potentially toxic elements found in leachate of fly-ash based composites was far below tolerance limit proposed by actual standards for the building materials, characterizing the fly ash non-harmful secondary raw material and enabling its reapplication in building materials industry. Utilizing fly ash to produce quality aggregates should yield significant environmental benefits

    Synthesis and sintering of high-temperature composites based on mechanically activated fly ash

    Get PDF
    Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products). As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation procedure on fly ash. In present study, fly ashes from two different power plants were mechanically activated in a planetary ball mill. Mechanically treated fly ashes were cemented with two different binders: standard Portland cement and high-aluminates cement. Physico-chemical analysis and investigation of mineralogical components of composites are emphasized, due to the changes occurred in fly ash during mechanical activation and sintering of composites. Macro-performance of the composites was correlated to the microstructure of fly ash studied by means of XRD and SEM analysis. Thermal stability of crystalline phases was investigated with DTA. Highlight was placed on determination of relationship between mechanically activated fly ash and obtained composites microstructure on one side and behavior of sintered composites on the other side. [Projekat Ministarstva nauke Republike Srbije, br. 172057, 45008 and a project F-198, financed by Serbian Academy of Sciences and Arts

    alpha'-exact entropies for BPS and non-BPS extremal dyonic black holes in heterotic string theory from ten-dimensional supersymmetry

    Full text link
    We calculate near-horizon solutions for four-dimensional 4-charge and five-dimensional 3-charge black holes in heterotic string theory from the part of the ten-dimensional tree-level effective action which is connected to gravitational Chern-Simons term by supersymmetry. We obtain that the entropies of large black holes exactly match the alpha'-exact statistical entropies obtained from microstate counting (D=4) and AdS/CFT correspondence (D=5). Especially interesting is that we obtain agreement for both BPS and non-BPS black holes, contrary to the case of R^2-truncated (four-derivative) actions (D-dimensional N=2 off-shell supersymmetric or Gauss-Bonnet) were used, which give the entropies agreeing (at best) just for BPS black holes. The key property of the solutions, which enabled us to tackle the action containing infinite number of terms, is vanishing of the Riemann tensor \bar{R}_{MNPQ} obtained from torsional connection defined with \bar{\Gamma} = \Gamma - H/2. Morover, if every monomial of the remaining part of the effective action would contain at least two Riemanns \bar{R}_{MNPQ}, it would trivially follow that our solutions are exact solutions of the full heterotic effective action in D=10. The above conjecture, which appeared (in this or stronger form) from time to time in the literature, has controversial status, but is supported by the most recent calculations of Richards (arXiv:0807.3453 [hep-th]). Agreement of our results for the entropies with the microscopic ones supports the conjecture. As for small black holes, our solutions in D=5 still have singular horizons.Comment: 28 pages; v2: minor changes, references added; v3: extended discussion on small black holes in sec. 5.4, more references added, accepted in JHE

    Pulsar timing arrays and the challenge of massive black hole binary astrophysics

    Full text link
    Pulsar timing arrays (PTAs) are designed to detect gravitational waves (GWs) at nHz frequencies. The expected dominant signal is given by the superposition of all waves emitted by the cosmological population of supermassive black hole (SMBH) binaries. Such superposition creates an incoherent stochastic background, on top of which particularly bright or nearby sources might be individually resolved. In this contribution I describe the properties of the expected GW signal, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. I describe the status of current PTA efforts, and prospect of future detection and SMBH binary astrophysics.Comment: 18 pages, 4 figures. To appear in the Proceedings of the 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Empirical Models for Dark Matter Halos. III. The Kormendy relation and the log(rho_e)-log(R_e) relation

    Full text link
    We have recently shown that the 3-parameter density-profile model from Prugniel & Simien provides a better fit to simulated, galaxy- and cluster-sized, dark matter halos than an NFW-like model with arbitrary inner profile slope gamma (Paper I). By construction, the parameters of the Prugniel-Simien model equate to those of the Sersic R^{1/n} function fitted to the projected distribution. Using the Prugniel-Simien model, we are therefore able to show that the location of simulated (10^{12} M_sun) galaxy-sized dark matter halos in the _e-log(R_e) diagram coincides with that of brightest cluster galaxies, i.e., the dark matter halos appear consistent with the Kormendy relation defined by luminous elliptical galaxies. These objects are also seen to define the new, and equally strong, relation log(rho_e) = 0.5 - 2.5log(R_e), in which rho_e is the internal density at r=R_e. Simulated (10^{14.5} M_sun) cluster-sized dark matter halos and the gas component of real galaxy clusters follow the relation log(rho_e) = 2.5[1 - log(R_e)]. Given the shapes of the various density profiles, we are able to conclude that while dwarf elliptical galaxies and galaxy clusters can have dark matter halos with effective radii of comparable size to the effective radii of their baryonic component, luminous elliptical galaxies can not. For increasingly large elliptical galaxies, with increasingly large profile shapes `n', to be dark matter dominated at large radii requires dark matter halos with increasingly large effective radii compared to the effective radii of their stellar component.Comment: AJ, in press. (Paper I can be found at astro-ph/0509417

    Lyapunov exponent of many-particle systems: testing the stochastic approach

    Full text link
    The stochastic approach to the determination of the largest Lyapunov exponent of a many-particle system is tested in the so-called mean-field XY-Hamiltonians. In weakly chaotic regimes, the stochastic approach relates the Lyapunov exponent to a few statistical properties of the Hessian matrix of the interaction, which can be calculated as suitable thermal averages. We have verified that there is a satisfactory quantitative agreement between theory and simulations in the disordered phases of the XY models, either with attractive or repulsive interactions. Part of the success of the theory is due to the possibility of predicting the shape of the required correlation functions, because this permits the calculation of correlation times as thermal averages.Comment: 11 pages including 6 figure

    Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    Get PDF
    The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E>100E > 100 GeV) γ\gamma-ray band with a statistical significance of 5.9 σ\sigma. The integral flux above 150 GeV is estimated to be (2.0±0.5)(2.0\pm 0.5) per cent of the Crab Nebula flux. We used contemporaneous high energy (HE, 100 MeV <E<100 < E < 100 GeV) γ\gamma-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z=0.34±0.15z = 0.34 \pm 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution (SED) of H1722+119 shows surprising behaviour in the 3×10141018\sim 3\times10^{14} - 10^{18} Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.Comment: 12 pages, 5 figures, 2 table

    Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes

    Get PDF
    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&

    Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    Full text link
    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.Comment: 160 pages, ~93 figures This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177, DE-AC02-06CH11357, DE-AC05-060R23177, and DESC0005823. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purpose
    corecore