14 research outputs found
Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring.
OBJECTIVE: Verbal autopsy (VA) is a systematic approach for determining causes of death (CoD) in populations without routine medical certification. It has mainly been used in research contexts and involved relatively lengthy interviews. Our objective here is to describe the process used to shorten, simplify, and standardise the VA process to make it feasible for application on a larger scale such as in routine civil registration and vital statistics (CRVS) systems. METHODS: A literature review of existing VA instruments was undertaken. The World Health Organization (WHO) then facilitated an international consultation process to review experiences with existing VA instruments, including those from WHO, the Demographic Evaluation of Populations and their Health in Developing Countries (INDEPTH) Network, InterVA, and the Population Health Metrics Research Consortium (PHMRC). In an expert meeting, consideration was given to formulating a workable VA CoD list [with mapping to the International Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) CoD] and to the viability and utility of existing VA interview questions, with a view to undertaking systematic simplification. FINDINGS: A revised VA CoD list was compiled enabling mapping of all ICD-10 CoD onto 62 VA cause categories, chosen on the grounds of public health significance as well as potential for ascertainment from VA. A set of 221 indicators for inclusion in the revised VA instrument was developed on the basis of accumulated experience, with appropriate skip patterns for various population sub-groups. The duration of a VA interview was reduced by about 40% with this new approach. CONCLUSIONS: The revised VA instrument resulting from this consultation process is presented here as a means of making it available for widespread use and evaluation. It is envisaged that this will be used in conjunction with automated models for assigning CoD from VA data, rather than involving physicians
Performance of InterVA for assigning causes of death to verbal autopsies: multisite validation study using clinical diagnostic gold standards
Background: InterVA is a widely disseminated tool for cause of death attribution using information from verbal autopsies. Several studies have attempted to validate the concordance and accuracy of the tool, but the main limitation of these studies is that they compare cause of death as ascertained through hospital record review or hospital discharge diagnosis with the results of InterVA. This study provides a unique opportunity to assess the performance of InterVA compared to physician-certified verbal autopsies (PCVA) and alternative automated methods for analysis.Methods: Using clinical diagnostic gold standards to select 12,542 verbal autopsy cases, we assessed the performance of InterVA on both an individual and population level and compared the results to PCVA, conducting analyses separately for adults, children, and neonates. Following the recommendation of Murray et al., we randomly varied the cause composition over 500 test datasets to understand the performance of the tool in different settings. We also contrasted InterVA with an alternative Bayesian method, Simplified Symptom Pattern (SSP), to understand the strengths and weaknesses of the tool.Results: Across all age groups, InterVA performs worse than PCVA, both on an individual and population level. On an individual level, InterVA achieved a chance-corrected concordance of 24.2% for adults, 24.9% for children, and 6.3% for neonates (excluding free text, considering one cause selection). On a population level, InterVA achieved a cause-specific mortality fraction accuracy of 0.546 for adults, 0.504 for children, and 0.404 for neonates. The comparison to SSP revealed four specific characteristics that lead to superior performance of SSP. Increases in chance-corrected concordance are attained by developing cause-by-cause models (2%), using all items as opposed to only the ones that mapped to InterVA items (7%), assigning probabilities to clusters of symptoms (6%), and using empirical as opposed to expert probabilities (up to 8%).Conclusions: Given the widespread use of verbal autopsy for understanding the burden of disease and for setting health intervention priorities in areas that lack reliable vital registrations systems, accurate analysis of verbal autopsies is essential. While InterVA is an affordable and available mechanism for assigning causes of death using verbal autopsies, users should be aware of its suboptimal performance relative to other methods
Population Health Metrics Research Consortium gold standard verbal autopsy validation study: design, implementation, and development of analysis datasets
Background: Verbal autopsy methods are critically important for evaluating the leading causes of death in populations without adequate vital registration systems. With a myriad of analytical and data collection approaches, it is essential to create a high quality validation dataset from different populations to evaluate comparative method performance and make recommendations for future verbal autopsy implementation. This study was undertaken to compile a set of strictly defined gold standard deaths for which verbal autopsies were collected to validate the accuracy of different methods of verbal autopsy cause of death assignment.Methods: Data collection was implemented in six sites in four countries: Andhra Pradesh, India; Bohol, Philippines; Dar es Salaam, Tanzania; Mexico City, Mexico; Pemba Island, Tanzania; and Uttar Pradesh, India. The Population Health Metrics Research Consortium (PHMRC) developed stringent diagnostic criteria including laboratory, pathology, and medical imaging findings to identify gold standard deaths in health facilities as well as an enhanced verbal autopsy instrument based on World Health Organization (WHO) standards. A cause list was constructed based on the WHO Global Burden of Disease estimates of the leading causes of death, potential to identify unique signs and symptoms, and the likely existence of sufficient medical technology to ascertain gold standard cases. Blinded verbal autopsies were collected on all gold standard deaths.Results: Over 12,000 verbal autopsies on deaths with gold standard diagnoses were collected (7,836 adults, 2,075 children, 1,629 neonates, and 1,002 stillbirths). Difficulties in finding sufficient cases to meet gold standard criteria as well as problems with misclassification for certain causes meant that the target list of causes for analysis was reduced to 34 for adults, 21 for children, and 10 for neonates, excluding stillbirths. To ensure strict independence for the validation of methods and assessment of comparative performance, 500 test-train datasets were created from the universe of cases, covering a range of cause-specific compositions.Conclusions: This unique, robust validation dataset will allow scholars to evaluate the performance of different verbal autopsy analytic methods as well as instrument design. This dataset can be used to inform the implementation of verbal autopsies to more reliably ascertain cause of death in national health information systems
Moving from data on deaths to public health policy in Agincourt, South Africa : approaches to analysing and understanding verbal autopsy findings
There were no differences between physician interpretation and probabilistic modelling that might have led to substantially different public health policy conclusions at the population level. Physician interpretation was more nuanced than the model, for example in identifying cancers at particular sites, but did not capture the uncertainty associated with individual cases. Probabilistic modelling was substantially cheaper and faster, and completely internally consistent. Both approaches characterised the rise of HIV-related mortality in this population during the period observed, and reached similar findings on other major causes of mortality. For many purposes probabilistic modelling appears to be the best available means of moving from data on deaths to public health actions. Please see later in the article for the Editors' Summary.Funder/forskningsfinansiär: University of the Witwatersrand and Medical Research Council, South Africa</p
Usefulness of the Population Health Metrics Research Consortium gold standard verbal autopsy data for general verbal autopsy methods
BACKGROUND: Verbal Autopsy (VA) is widely viewed as the only immediate strategy for registering cause of death in much of Africa and Asia, where routine physician certification of deaths is not widely practiced. VA involves a lay interview with family or friends after a death, to record essential details of the circumstances. These data can then be processed automatically to arrive at standardized cause of death information. METHODS: The Population Health Metrics Research Consortium (PHMRC) undertook a study at six tertiary hospitals in low- and middle-income countries which documented over 12,000 deaths clinically and subsequently undertook VA interviews. This dataset, now in the public domain, was compared with the WHO 2012 VA standard and the InterVA-4 interpretative model. RESULTS: The PHMRC data covered 70% of the WHO 2012 VA input indicators, and categorized cause of death according to PHMRC definitions. After eliminating some problematic or incomplete records, 11,984 VAs were compared. Some of the PHMRC cause definitions, such as 'preterm delivery', differed substantially from the International Classification of Diseases, version 10 equivalent. There were some appreciable inconsistencies between the hospital and VA data, including 20% of the hospital maternal deaths being described as non-pregnant in the VA data. A high proportion of VA cases (66%) reported respiratory symptoms, but only 18% of assigned hospital causes were respiratory-related. Despite these issues, the concordance correlation coefficient between hospital and InterVA-4 cause of death categories was 0.61. CONCLUSIONS: The PHMRC dataset is a valuable reference source for VA methods, but has to be interpreted with care. Inherently inconsistent cases should not be included when using these data to build other VA models. Conversely, models built from these data should be independently evaluated. It is important to distinguish between the internal and external validity of VA models. The effects of using tertiary hospital data, rather than the more usual application of VA to all-community deaths, are hard to evaluate. However, it would still be of value for VA method development to have further studies of population-based post-mortem examinations
Evaluating the performance of interpreting Verbal Autopsy 3.2 model for establishing pulmonary tuberculosis as a cause of death in Ethiopia: a population-based cross-sectional study
Limitations to current methods to estimate cause of death: a validation study of a verbal autopsy model
Using verbal autopsy to track epidemic dynamics : the case of HIV-related mortality in South Africa.
Background Verbal autopsy (VA) has often been used for point estimates of cause-specific mortality, but seldom to characterize long-term changes in epidemic patterns. Monitoring emerging causes of death involves practitioners' developing perceptions of diseases and demands consistent methods and practices. Here we retrospectively analyze HIV-related mortality in South Africa, using physician and modeled interpretation. Methods Between 1992 and 2005, 94% of 6,153 deaths which occurred in the Agincourt subdistrict had VAs completed, and coded by two physicians and the InterVA model. The physician causes of death were consolidated into a single consensus underlying cause per case, with an additional physician arbitrating where different diagnoses persisted. HIV-related mortality rates and proportions of deaths coded as HIV-related by individual physicians, physician consensus, and the InterVA model were compared over time. Results Approximately 20% of deaths were HIV-related, ranging from early low levels to tenfold-higher later population rates (2.5 per 1,000 person-years). Rates were higher among children under 5 years and adults 20 to 64 years. Adult mortality shifted to older ages as the epidemic progressed, with a noticeable number of HIV-related deaths in the over-65 year age group latterly. Early InterVA results suggested slightly higher initial HIV-related mortality than physician consensus found. Overall, physician consensus and InterVA results characterized the epidemic very similarly. Individual physicians showed marked interobserver variation, with consensus findings generally reflecting slightly lower proportions of HIV-related deaths. Aggregated findings for first versus second physician did not differ appreciably. Conclusions VA effectively detected a very significant epidemic of HIV-related mortality. Using either physicians or InterVA gave closely comparable findings regarding the epidemic. The consistency between two physician coders per case (from a pool of 14) suggests that double coding may be unnecessary, although the consensus rate of HIV-related mortality was approximately 8% lower than by individual physicians. Consistency within and between individual physicians, individual perceptions of epidemic dynamics, and the inherent consistency of models are important considerations here. The ability of the InterVA model to track a more than tenfold increase in HIV-related mortality over time suggests that finely tuned "local" versions of models for VA interpretation are not necessary
