1,482 research outputs found
Fabrication and transport critical currents of multifilamentary MgB2/Fe wires and tapes
Multifilamentary MgB2/Fe wires and tapes with high transport critical current
densities have been fabricated using a straightforward powder-in-tube (PIT)
process. After annealing, we measured transport jc values up to 1.1 * 105 A/cm2
at 4.2 K and in a field of 2 T in a MgB2/Fe square wire with 7 filaments
fabricated by two-axial rolling, and up to 5 * 104 A/cm2 at 4.2 K in 1 T in a
MgB2/Fe tape with 7 filaments. For higher currents these multifilamentary wires
and tapes quenched due to insufficient thermal stability of filaments. Both the
processing routes and deformation methods were found to be important factors
for fabricating multifilamentary MgB2 wires and tapes with high transport jc
values.Comment: 13 pages, 7 figure
The U(1)A anomaly in noncommutative SU(N) theories
We work out the one-loop anomaly for noncommutative SU(N) gauge
theories up to second order in the noncommutative parameter .
We set and conclude that there is no breaking of the classical
symmetry of the theory coming from the contributions that are either
linear or quadratic in . Of course, the ordinary anomalous
contributions will be still with us. We also show that the one-loop
conservation of the nonsinglet currents holds at least up to second order in
. We adapt our results to noncommutative gauge theories with
SO(N) and U(1) gauge groups.Comment: 50 pages, 5 figures in eps files. Some comments and references adde
Scaling Behavior of Quasi-One-Dimensional Vortex Avalanches in Superconducting Films
Scaling behaviour of dynamically driven vortex avalanches in superconducting
YBaCuO films deposited on tilted crystalline
substrates has been observed using quantitative magneto-optical imaging. Two
films with different tilt angles are characterized by the probability
distributions of avalanche size in terms of the number of moving vortices. It
is found in both samples that these distributions follow power-laws over up to
three decades, and have exponents ranging between 1.0 and 1.4. The
distributions also show clear finite-size scaling, when the system size is
defined by the depth of the flux penetration front -- a signature of
self-organized criticality. A scaling relation between the avalanche size
exponent and the fractal dimension, previously derived theoretically from
conservation of the number of magnetic vortices in the stationary state and
shown in numerical simulations, is here shown to be satisfied also
experimentally.Comment: 7 pages, 5 figure
Sintering Kinetics of Plasma-Sprayed Zirconia TBCs
A model of the sintering exhibited by EB-PVD TBCs, based on principles of free energy minimization, was recently published by Hutchinson et al. In the current paper, this approach is applied to sintering of plasma-sprayed TBCs and comparisons are made with experimental results. Predictions of through-thickness shrinkage and changing pore surface area are compared with experimental data obtained by dilatometry and BET analysis respectively. The sensitivity of the predictions to initial pore architecture and material properties are assessed. The model can be used to predict the evolution of contact area between overlying splats. This is in turn related to the through-thickness thermal conductivity, using a previously-developed analytical model
Fingering Instability of Dislocations and Related Defects
We identify a fundamental morphological instability of mobile dislocations in
crystals and related line defects. A positive gradient in the local driving
force along the direction of defect motion destabilizes long-wavelength
vibrational modes, producing a ``fingering'' pattern. The minimum unstable
wavelength scales as the inverse square root of the force gradient. We
demonstrate the instability's onset in simulations of a screw dislocation in Al
(via molecular dynamics) and of a vortex in a 3-d XY ``rotator'' model.Comment: 4 pages, 3 figure
Kaposi's sarcoma-associated herpesvirus oncoprotein K13 protects against B cell receptor induced growth arrest and apoptosis through NF-κB activation
Kaposi's sarcoma-associated herpesvirus (KSHV) has been linked to the development of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease (MCD). We have characterized the role of KSHV-encoded viral FLICE inhibitory protein K13 in the modulation of anti-IgM induced growth arrest and apoptosis in B cells. We demonstrate that K13 protects WEHI 231, an immature B cell line, against anti-IgM induced growth arrest and apoptosis. The protective effect of K13 was associated with the activation of the NF-κB pathway and was deficient in its mutant, K13-58AAA, and a structural homolog, vFLIP E8, which lack NF-κB activity. K13 upregulated the expression of NF-κB subunit RelB and blocked the anti-IgM induced decline in c-Myc and rise in p27(Kip1) that have been associated with growth arrest and apoptosis. K13 also upregulated the expression of Mcl-1, an anti-apoptotic member of the Bcl2 family. Finally, K13 protected the mature B cell line Ramos against anti-IgM induced apoptosis through NF-κB activation. Inhibition of anti-IgM induced apoptosis by K13 may contribute to the development of KSHV-associated lymphoproliferative disorders
Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries
The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate
Magnetic fields in noncommutative quantum mechanics
We discuss various descriptions of a quantum particle on noncommutative space
in a (possibly non-constant) magnetic field. We have tried to present the basic
facts in a unified and synthetic manner, and to clarify the relationship
between various approaches and results that are scattered in the literature.Comment: Dedicated to the memory of Julius Wess. Work presented by F. Gieres
at the conference `Non-commutative Geometry and Physics' (Orsay, April 2007
- …
