316 research outputs found

    Hybrid Signal Processing and Soft Computing approaches to Power System Frequency Estimation

    Get PDF
    Dynamic variation in power system frequency is required to be estimated for implementing the correcting measures. This paper presents power system frequency estimation by using RLS-Adaline and KF-Adaline algorithms. In the proposed hybrid approaches the weights of the Adaline are updated using RLS/KF algorithms. Frequency of power system signal is estimated from final updated weights of the Adaline. The performances of the proposed algorithms are studied through simulations for several critical cases that often arise in a power system. These studies show that the KF-Adaline algorithm is superior over the RLS-Adaline in estimating power system frequency. Studies made on experimental data also support the superiority

    Forecasting Global Solar Insolation Using the Ensemble Kalman Filter Based Clearness Index Model

    Get PDF
    This paper describes a novel approach in developing a model for forecasting of global insolation on a horizontal plane. In the proposed forecasting model, constraints, such as latitude and whole precipitable water content in vertical column of that location, are used. These parameters can be easily measurable with a global positioning system (GPS). The earlier model was developed by using the above datasets generated from different locations in India. The model has been verified by calculating theoretical global insolation for different sites covering east, west, north, south and the central region with the measured values from the same locations. The model has also been validated on a region, from which data was not used during the development of the model. In the model, clearness index coefficients (KT) are updated using the ensemble Kalman filter (EnKF) algorithm. The forecasting efficacies using the KT model and EnKF algorithm have also been verified by comparing two popular algorithms, namely the recursive least square (RLS) and Kalman filter (KF) algorithms. The minimum mean absolute percentage error (MAPE), mean square error (MSE) and correlation coefficient (R) value obtained in global solar insolation estimations using EnKF in one of the locations are 2.4%, 0.0285 and 0.9866 respectively

    Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm

    Get PDF
    publisher: Elsevier articletitle: Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm journaltitle: Ocean Engineering articlelink: http://dx.doi.org/10.1016/j.oceaneng.2016.09.040 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved

    Heuristic Multi-Agent Control for Energy Management of Microgrids with Distributed Energy Sources

    Get PDF
    The increased integration of distributed Renewable Energy Sources (RESs) and adoption of Electric Vehicles (EVs) require appropriate control and management of energy sources and EV charging. This becomes critical at the distribution system level, especially at a microgrid (MG) level. This control is required not only to mitigate the negative impacts of intermittent generation from RESs but also to make better use of available energy, reduce carbon footprint, maximize the overall profit of microgrid and increase energy autonomy by effective utilization of battery storage. This paper proposes a heuristic multi-agent based decentralized energy management approach for grid-connected MG. The MG comprises of active (controlled) and passive (uncontrolled) electrical loads, a photovoltaic (PV) system, battery energy storage system (BESS) and a charging post for electric vehicles. The proposed approach is aimed at optimizing the use of local energy generation from photovoltaic and smart energy utilization to serve electrical loads and EV as well as maximizing MG profit. The aim of the energy management is to supply local consumption at minimum cost and less dependency on the main grid supply. Utilizing energy available from RESs (PV and BESS), customers satisfaction (fulfilling local demand), considering uncertainty of renewable generation and load consumption and also taking into account technical constraint are the main strengths of the presented framework. Performance of the proposed algorithm is investigated under different operating conditions and its efficacy is verified

    A Novel Mutation of the NARROW LEAF 1 Gene Adversely Affects Plant Architecture in Rice (Oryza sativa L.)

    Get PDF
    Plant architecture is critical for enhancing the adaptability and productivity of crop plants. Mutants with an altered plant architecture allow researchers to elucidate the genetic network and the underlying mechanisms. In this study, we characterized a novel nal1 rice mutant with short height, small panicle, and narrow and thick deep green leaves that was identified from a cross between a rice cultivar and a weedy rice accession. Bulked segregant analysis coupled with genome re-sequencing and cosegregation analysis revealed that the overall mutant phenotype was caused by a 1395-bp deletion spanning over the last two exons including the transcriptional end site of the nal1 gene. This deletion resulted in chimeric transcripts involving nal1 and the adjacent gene, which were validated by a reference-guided assembly of transcripts followed by PCR amplification. A comparative transcriptome analysis of the mutant and the wild-type rice revealed 263 differentially expressed genes involved in cell division, cell expansion, photosynthesis, reproduction, and gibberellin (GA) and brassinosteroids (BR) signaling pathways, suggesting the important regulatory role of nal1. Our study indicated that nal1 controls plant architecture through the regulation of genes involved in the photosynthetic apparatus, cell cycle, and GA and BR signaling pathways

    Online Sensorless Solar Power Forecasting for Microgrid Control and Automation

    Get PDF
    Meteorological conditions such as air density, temperature, solar radiation etc. strongly affect the power generation from solar, and thus, the prediction and estimation process should consider weather conditions as critical inputs. The nature of weather forecast is highly unpredictable, so many applications use meteorological data from in-place on-site sensors to add to the forecast and some use complex networks with complicated mapping. The in-situ sensor approach and dense mapping methods, however, present several drawbacks. First, the use of sensors give rise to extra operational, installation and maintenance cost. Second, it requires significant amount of time to capture and accumulate data for various occasions and scenarios, and in addition, sensor itself can be the cause of error measurements. The complex methods are computational inefficient and may present suboptimal convergence. This paper presents a sensorless solar output power forecasting based on historical weather (publicly available from met office) and PV data. The algorithm uses simple to implement neural networks with few neurons and hidden layers for its training and allows for day a head forecast. The proposed methodology presents a guideline on how to select the relevant data from weather and how it affects the accuracy and training time of neural network. The benefit of developed method is an improvement on the energy management, utilization and reliability of the microgrid
    • …
    corecore