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Abstract—This paper describes a novel approach in developing
a model for forecasting of global insolation on a horizontal plane.
In the proposed forecasting model, constraints, such as latitude
and whole precipitable water content in vertical column of that
location, are used. These parameters can be easily measurable
with a global positioning system (GPS). The earlier model was
developed by using the above datasets generated from different
locations in India. The model has been verified by calculating
theoretical global insolation for different sites covering east, west,
north, south and the central region with the measured values
from the same locations. The model has also been validated on
a region, from which data was not used during the development
of the model. In the model, clearness index coefficients (KT) are
updated using the ensemble Kalman filter (EnKF) algorithm. The
forecasting efficacies using the KT model and EnKF algorithm
have also been verified by comparing two popular algorithms,
namely the recursive least square (RLS) and Kalman filter
(KF) algorithms. The minimum mean absolute percentage error
(MAPE), mean square error (MSE) and correlation coefficient
(R) value obtained in global solar insolation estimations using
EnKF in one of the locations are 2.4%, 0.0285 and 0.9866
respectively.

Index Terms—Clearness index, ensemble Kalman filter,
extra-terrestrial irradiance, forecasting, global solar insolation.

I. INTRODUCTION

INTERMITTENT and variable nature of renewable gener-
ation poses new challenges to power system operations

and controls. With high penetration of solar irradiance in
a photovoltaic (PV) system, more acute problems, such as
voltage and frequency fluctuations, occur resulting in addi-
tional requirements of ancillary generation and challenges in
the electricity markets. Therefore, devising accurate forecast-
ing methods has attracted more attention to researchers, for
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resolving the earlier issues with intermittency in PV power
systems. Since the majority of generation units are associated
with the output of the day ahead market, day ahead forecasting
is important. A new model proposed [1] is to estimate solar
insolation, through comparing it with numerical simulation and
climatology measured data. Results show accurate evaluation
of solar radiation for any day of a year with inputs, such as
altitude, longitude and latitude. However, a main concern is
that in order to collect the greatest solar energy, the orientation
and inclination of the receiver should be varied, as per the
variation of the solar declination angle. The diffuse ratio (k)
vs. clearness index (KT) was reviewed [2] for hourly, daily,
monthly and yearly frequency regression models. From the
regressor equation, the averaged diffuse irradiation values have
been estimated from the averaged global irradiation values.
A method [3] has been developed for calculation of total
solar radiation from the evaluated direct and scattered solar
radiation. In this method, the bias, which is the difference
between the estimated and calculated values of diffuse and
direct solar irradiance, act as an offset in the estimation of
global solar insolation. It was also determined that temperature
and relative humidity are the considered factors influencing the
bias for direct and diffuse solar radiation. In addition, the as-
sessment of global solar insolation is limited using this model.
A rigorous review [4] has been made for the development and
analysis of different models for estimating diffuse horizontal
solar radiation during the day for different baroscopic places
in China. The System Advisor Model (SAM) [5] is used to
obtain the past solar generation information, and provide the
input data from Solar anywhere. Using MATLAB software
and the System Identification Toolbox, the model has been
validated. The main concern here is that when the forecast
horizon increases, both the persistence and Auto Regressive
Moving Average (ARMA) models provide erroneous results.
In [5] because of geographical differences, for prediction of
irradiance, each location requires one model and the construc-
tion of the model requires two phases, i.e., for finding out
orders and coefficients of the ARMA. For a country covering
a vast geographical location, a single model cannot accurately
forecast the solar power. A simple theoretical model has
been developed in [6] for assessment of total solar insolation
on a horizontal plane. The model is developed considering
the latitude and the quantity of the entire precipitable water
content in the vertical column of the desired site as input
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constraints. However, the main lacunae in [6] is that the
perfect estimation of the clearness index KT, is not achievable,
which plays a major role in the forecasting of global solar
irradiance. A two-stage technique was introduced [7], where,
at first, a statistical regulation of the lunar power has been
carried out using a clear sky model. Then an adaptive linear
time series model is used for forecasting the regulated solar
power. The main disadvantage is that the model relies on
the dependency of two types of inputs, such as for forecasts
up to 2 h ahead solar power, while for longer horizons,
Numerical Weather Predictions (NWP) are the most important
inputs. A hybrid model based on the mesoscale meteorological
Weather Research and Forecasting (WRF) model [8] and the
clearness index-based Kalman filter were developed for day-
ahead solar radiation prediction and were validated for two
sites in Japan and China. This model has a drawback that
the forecasting accuracy is much better in clear skies than in
overcast conditions. Solar irradiance forecasting by employing
artificial neural network (ANN) is suggested in [9]. In the
ANN model, the Multilayer Perceptron MLP-model is found
to be reasonably good to estimate the 24 hours based solar
irradiance by applying the daily temperature of air and mean
solar irradiance. The main issue lies in the complexity of
the MLP-forecasting which requires huge computing time for
attaining a decent performance. The authors propose the use of
power output forecasting [10] that is based on 24 hours leading
insolation forecasting for a PV system by utilizing weather
testified statistics, fuzzy theory, and ANN. In this model, also
more complexity is involved in training NN by output power
information created on fuzzy theory and weather reported
information. A comparative study [11] has been carried out
among empirical models and ANN models and it was found
that empirical models perform better compared to ordinary
ANN models. However, when ordinary ANN models are cou-
pled with the Genetic Algorithm, their performance improved.
However, taking into account all the factors, such as skill,
processing time and equipment, the empirical model is a better
choice for evaluation of day-to-day total solar insolation in the
climatic conditions of Iran. A feedforward backpropagation
model [12] and its application in predicting the daily global
solar radiation was presented. The proposed neural network
runs with ten neurons and the log-sigmoid transfer function
of the hidden. Fifteen numbers of different Geographical and
meteorological parameters were used as input variables and
daily global solar radiation as output variables. After accessing
the neural network-based method [13], [14], experiments have
been performed on machine learning based methods [15], such
as random forest, gradient boosting, regression tree and many
others, for the prediction of solar irradiance. In machine learn-
ing [15], the construction and study of systems can be learned
from data sets, giving computers the ability to learn without
being explicitly programmed. Machine learning models find
relationships between input and output even without any
possible representation. Before using machine learning models
for forecasting problems, classification and data mining are of
prime importance because one has to work with big datasets
and the task of pre-processing, data protection and transmis-
sion can be taken care of by machine learning models, so a

forecasting model using machine learning requires more skill
and computational time as compared to other conventional
methods. It was difficult to rank those methods as per their
performance because of the data set diversification, forecasting
horizon, time step and performance indicators. For improving
prediction performance, hybrid models have been suggested.
Another solar irradiance forecasting method [16] built on the
Markov Switching Model has been established. The above
technique has been applied to only remote locations where
cloud based and other numerical prediction techniques may
not be used.

A review of previousstudies in the field of forecasting in
solar irradiance exhibit shortcomings (Sh) and weaknesses can
be divided into the following categories:

1) Sh-1: Problem lies in the variation of the receiver as per
the variation of the solar declination angle and modeling
for the accuracy of the clearness index KT, which plays
a vital role in forecasting of global solar insolation ( [1],
[2], [6], [7]).

2) Sh-2: Temperature and humidity, affect the bias for direct
and diffuse solar irradiance and finally affect the forecast-
ing performance of global solar insolation ( [3], [4]).

3) Sh-3: Model developed for solar irradiance forecasting
is not uniform for any location in the world, i.e., it
is location specific and also when the forecast horizon
increases, accuracy in forecasting decreases ( [5], [16]).

4) Sh-4: Main concern in neural network (NN) and hybrid
model-based forecasting lies in training of NN requiring a
huge amount of weather data, involvement of more skill,
computation time and equipment in forecasting of solar
irradiance ( [8]–[12]).

Solar insolation forecasting is currently more important
because of more inclusion of PV in conventional power sys-
tems. Statistical methods of forecasting provide good results
for forecast horizons of up to 6 hours but for greater than
a 6 hour forecast horizon, the numerical weather prediction
(NWP) method is preferred. However, in this paper, a clearness
index model based Ensemble Kalman Filtering is used for
accurate forecasting of global solar insolation on a horizontal
plane. The performance of the proposed method has also been
compared with the recursive least square (RLS) and Kalman
filtering (KF) methods.

The model developed in this study for forecasting direct
insolation depends on two dominant measured constraints,
such as latitude and precipitable water in the vertical column
of the desired site. By using a global positioning system GPS
receiver or a geographical map, the latitude of the desired site
can be found. The source of insolation data for different lo-
cations within India is the Indian Meteorological Department,
Pune i.e., https://imdpune.gov.in/ site. From the data related
to daily relative humidity provided by the climatological
department, precipitable water at these places can be found,
or can be measured using radiosonde or GPS receivers. In
the developed model for calculating clearness index (i.e KT),
Fourier coefficients are updated using an ensemble Kalman
filter (EnKF) algorithm. So, a model, based on few input
parameters will aid in fast and easy estimations of insolation
for any place for any specified day.

https://imdpune.gov.in/
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The major contributions of this paper are summarized as
follows:

1) Solar irradiance forecasting was performed based on two
important parameters (latitude and precipitable water in
the vertical column of the desired location). Environmen-
tal conditions and solar angles are also taken into account
during the development of the model (tackling Sh1, Sh2).

2) In the developed model KT, Fourier coefficients are
updated using an ensemble Kalman filter (EnKF) algo-
rithm, which provides more accuracy in estimating for
KT (tackling Sh1).

3) In the proposed model, a few input parameters are used
for fast and easy estimation of insolation for any place
for any specified day (tackling Sh3, Sh4).

The remainder of this paper is organized as follows: The
development of the Ensemble Kalman Filter based clearness
index model for global solar insolation forecasting is explained
in Section II. The test and validation results are discussed in
Section III. Section IV concludes this paper.

II. ENSEMBLE KALMAN FILTER (ENKF) BASED
CLEARNESS INDEX MODEL

The schematic for forecasting of global solar insolation is
shown in Fig. 1. First KT modeling is carried out and then
the final estimate of KT is performed using the EnKF/RLS/KF
algorithm, Finally, global solar insolation value is forecasted.

The average monthly data for daily global solar insolation
is usually accessible for various places in a given region. The
data must be collected in a way that covers a large area of
latitudes. This data ise then reduced to an index of average
monthly daily clearance (i.e., KT) by taking the global solar
radiation to the estimated extra-terrestrial horizontal insola-
tion, at a specified site. Extra-terrestrial horizontal insolation
per day is an insolation on the horizontal surface without
atmospheric influences. Extra-terrestrial horizontal insolation
is expressed in terms of latitude and day of the year. It can be
estimated for any site and for any day as described below.

The extra- terrestrial horizontal insolation, Ho is given by:

H0 =
24I0
π

[cosϕ · cos δ · sinωsr + ωsr · sinϕ · sin δ] kWh/m2

(1)

where H0 = Extra – terrestrial horizontal insolation in
kWh/m2

I0 = Isc

[
1 + 0.033

(
360N

365

)]
(2)

I0 = Extra-terrestrial insolation in kW/m2

Isc = Solar constant = 1.367 kW/m2

N = Day of the particular year
ϕ = Latitude of the location in degrees

δ = 23.45 sin

[
2π(N − 80)

365

]
(3)

δ = Declination angle in degrees [13]
ωsr = Hour angle during Sunrise in radians

ωsr = cos−1(− tanϕ · tan δ) (4)

From the above equations, it can be observed that extra-
terrestrial horizontal insolation can be determined for each
location and day of the year as it depends on day of the year
and latitude only. But in the above calculations, atmospheric
effects had not been taken into account.

The effect of the atmosphere on insolation is determined by
the clearness index, KT. But, KT is a stochastic parameter,
that depends on time of year, climatic state, season and geo-
graphical position. So, in order to take into account, the effects
of the atmosphere on the insolation of a place, a model of the
clearness index is needed. For the modeling of KT, the data
on the insolation on a horizontal surface over a time interval
covering each of the seasons and atmospheric situations, for
a few locations, are to be measured. Utilizing Eq. (1), the H0

can be estimated for desired sites, which provides measured
global insolation. In the calculated value, atmospheric effect is
not taken into account. After the calculation of H0 for specific
locations and the measured global horizontal insolation for the
same locations, KT for these locations is calculated. Then a
graph is plotted by taking KT vs month of the year as shown
in Fig. 2. It is found from the graph that the variation of KT

is a periodic function having a periodicity of one-year. Thus,
for the modeling of KT, the Fourier series is regarded as a
suitable curve fitting method.

Determine Monthly Average Daily

Clearness Index

KT =

Latitude of

location

Monthly Average Global Solar Insolation

Extraterrestrial Horizontal Insolation

Modelling

of KT

Update unknown

parameters in KT

Model using EnKF/

RLS/KF Algorithm

Final estimate

of KT

Collection of Monthly

Average Daily Global

Solar Insolation data

Extraterrestrial

Horizontal Insolation

(Ho) calculation

Estimate/Forecast

Global Solar Insolation

= KT Ho

Day of the

year

Fig. 1. Schematic for forecasting of global solar insolation.
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Fig. 2. Variation of KT throughout year.

KT can be represented by the Fourier series:

KT = f(x,w, t) + e (5)
f(x,w, t) = A1 +A2 sin t+A3 sin 2t+A4 sin 3t

+A5 cos t+A6 cos 2t+A7 cos 3t (6)

Trigonometric terms (t) are functions of the day of the
particular year (N)

x = ϕ− 35 (7)

ϕ = Latitude in degrees
w = Total precipitable water vapor in gm/cm2

t = (2π/365)(N − 80) (8)

e = error

e = KT − f(x,w, t) (9)

x has been updated based on the best fit of the available data.
Since all the data used have been collected only from India,
we have found that an offset value of 35-degree latitude gives
the best fit for this sub-continent. In this way, the function of
x given in (7) has been determined.

A1, A2, · · · , A7: Functions of (ϕ) and (w)
Fourier coefficients are evaluated from the succeeding equa-

tion:

Ai = ai1 + ai2x+ ai3x
2 + ai4w + ai5w

2 (10)

Now replacing Ai in (6) for f(x,w, t)

f(x,w, t) = (a11 + a12x+ a13x
2 + a14w + a15w

2)

+ (a21 + a22x+ a23x
2 + a24w + a25w

2) sin t

+ (a31 + a32x+ a33x
2 + a34w + a35w

2) sin 2t

+ (a41 + a42x+ a43x
2 + a44w + a45w

2) sin 3t

+ (a51 + a52x+ a53x
2 + a54w + a55w

2) cos t

+ (a61 + a62x+ a63x
2 + a64w + a65w

2) cos 2t

+ (a71 + a72x+ a73x
2 + a74w + a75w

2) cos 3t

f(x,w, t) =H(x,w, t)θ (11)

H(x,w, t): system structure matrix
θ: vector of unknown parameter

Here the unknown parameters are estimated using the
Ensemble Kalman Filter (EnKF) [18] algorithm. The EnKF
is a Monte Carlo approximation of the conventional Kalman

Filter (KF). Rather than developing the covariance matrix of
probability density function of the state vector, it uses the
distribution characterized by a sample of the state vector x,
called an ensemble.

θ is updated using Ensemble Kalman Filtering (EnKF) as
given below:

Take the ensemble matrix θ and data matrix as f .
Ensemble mean and covariance are:

E(θ) =
1

Q

Q∑
n=1

θn (12)

Q: No. of Ensembles

C =
GGT

Q− 1
(13)

where

G = θ − E(θ) (14)

θ̂(k) = θ(k − 1) + CHT(HCHT +R)−1(f −Hθ̂(k − 1))
(15)

After finding the updated values of θ, i.e., a11, a12, · · · , a75
These coefficients are utilized to find the Fourier coefficients

A1, A2, · · · , A7

which leads to the following model for KT

KT =A1 +A2 sin t+A3 sin 2t+A4 sin 3t+A5 cos t

+A6 cos 2t+A7 cos 3t (16)

Now for a particular location and for a particular day of the
year, KT can be estimated by applying the above Equation.

Htf = KT ·H0 (17)

Htf = Estimated/forecasted value of Global solar insolation
on a horizontal surface at a particular location for a particular
day.

The EnKF algorithm, for estimation of daily global solar
insolation is given as the flow chart in Fig. 3.

III. RESULTS AND DISCUSSIONS

The model validation has been carried out in a two-step
method. In the first stage, measured daily median values of
global insolation data for 12 different locations covering a
large range of latitude across India was collected. The model
was developed using measured data from 12 different locations
in India covering the whole area of the country over a period
of 5 years. Based on this data, a model for KT was developed.
From the model, theoretical global insolation was calculated
and then compared with the measured value for validation.

In the second stage, the conceptual global insolation was
estimated for another location in India, whose latitude lies
inside the range of latitudes considered for development of
the model. The estimated and measured insolation curves
are studied for validation of the proposed model. Table I
shows the measured and forecasted values of global solar
insolation at five different locations covering north, south, east,
west and the central parts in India. In the table, Ins stands
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Start

Calculate δ, ωsr, H0 (kWh/m2)

using eq (3), (4)  and (1)

Initialize θ and k=1

Evaluate estimation error

using eq (9)

Model KT in parametric form

using eq (11)

Calculate E (θ),Cusing

eq (12),  (13) 

Obtain estimate of ensemble

vector using eq (15)

Is it the final

iteration (k=n)?

Estimate KT for a particular

day of the year using eq (16)

Calculate Global Solar

Insolation using eq (17) 

End

YES

NO

Load data set of KT, N, ϕ, w (gm/cm2)

for different regions

k = k + 1

Fig. 3. Flow chart for estimation of global solar insolation using the EnKF
algorithm.

for Insolation, Htm is the measured value of global solar
insolation in kWh/m2 and Htf is the forecasted value of global
solar insolation in kWh/m2.

Figure 4 shows the measured and calculated global solar
irradiance at region A, which is located in the northern part
of India. It is found that the estimation of global solar irradi-
ance, using RLS is comparatively better than using KF. But
estimating using EnKF outperforms RLS and KF in estimation
of global solar insolation. Fig. 5 shows the comparison of
estimation accuracy using all the three discussed algorithms
at region B, located in southern part of India and it was found
that also in this case, estimation accuracy is greater in the
case of EnKF estimation as compared to the RLS and KF
algorithms. Fig. 6 shows the comparative estimation of global
solar irradiance using the three algorithms in region C, which
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Fig. 4. Measured and estimated global solar irradiance for region A (North).
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Fig. 6. Measured and estimated global solar irradiance for region C (East).

is in the eastern part of India. In this region the measured and
estimated irradiances almost match with each other, with more
accuracy in the estimation using the EnKF algorithm.

For verification of the proposed EnKF based estimation of
global solar irradiance, for the rest of the two regions, Figs. 7
and 8 show the comparative estimation of global solar irradi-
ance in regions D and E, located in the western and central
parts of India. In both the Figs., the estimation performance
of global solar irradiance using EnKF is comparatively better
as contrasted to RLS and KF.

In order to measure the accuracy of the estimation, the errors
between the estimated values and measure data are examined
here. In this paper, mean absolute percentage error (MAPE),
mean square error (MSE) and correlation coefficient ® as
defined in Eqs. (18), (19) and (20) respectively, are used as
the error indices to verify the forecasting technique.
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TABLE I
MEASURED AND FORECASTED VALUES OF GLOBAL SOLAR INSOLATION

Loc Ins Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
A Htm 4.15 5.19 6.34 7.13 7.51 6.76 5.66 5.45 6.07 5.5 4.6 4.02

Htc (RLS) 4.2 4.61 6.92 6.48 6.72 6.15 5.2 6.33 6.33 5.25 4.3 4.01
Htc (KF) 4.3 4.7 6.6 6.32 7.2 6.16 5.42 5.31 5.86 4.3 4.77 4.00
Htc (EnKF) 4.2 5.0 6.4 7.4 7.3 6.5 5.5 5.35 6.36 5.63 4.68 4.00

B Htm 6.17 6.58 6.89 6.48 5.58 5.58 5.2 5.75 6.23 5.59 5.24 5.62
Htc (RLS) 6.48 7.23 6 6.15 5.46 5.44 5.47 4.8 6.6 5.49 5.3 5.69
Htc (KF) 6.05 7.54 6.2 7.8 6.92 5.12 5.04 5.3 6.0 4.98 6.04 5.4
Htc (EnKF) 6.1 7.5 6.3 6.85 6.2 5.3 5.06 5.5 6.1 5.53 5.8 5.5

C Htm 4.24 5.26 6.09 6.59 7.01 5.14 4.71 4.36 4.62 4.64 4.3 4.07
Htc (RLS) 4.6 4.18 6.7 6.74 6.3 5.27 3.96 4.4 4.62 4.59 4.35 3.84
Htc (KF) 4.77 4.89 6.91 6.73 7.26 5.0 4.83 4.2 4.5 4.3 3.8 4.2
Htc (EnKF) 4.5 4.94 7.0 6.4 6.7 5.2 5.0 4.3 4.4 4.4 4.6 4.02

D Htm 5.08 5.77 6.58 7.13 7.42 5.8 4.17 4.09 5.2 5.66 5.23 4.83
Htc (RLS) 4.9 5.5 5.83 6.16 6.63 5.62 4.32 4.88 4.81 4.92 5.0 4.75
Htc (KF) 4.78 5.86 5.15 6.4 6.5 5.27 4.54 4.9 5.4 5.63 5.32 4.35
Htc (EnKF) 5.2 5.6 6.78 7.13 7.48 5.56 4.86 4.8 5.5 5.33 5.1 4.5

E Htm 5.03 5.78 6.43 6.97 7.12 6.01 4.41 4.22 5.38 5.87 5.3 4.85
Htc (RLS) 4.32 5.84 6.07 7.20 6.74 6.64 4.51 3.53 5.28 5.87 4.78 5.02
Htc (KF) 5.24 6.2 6.8 7.5 6.86 6.4 4.43 5.21 4.32 5.6 5.32 5.01
Htc (EnKF) 5.1 6.4 6.24 7.3 7.1 5.85 4.5 4.3 5.0 5.3 5.4 5.00

8

6

G
lo

b
al

 i
n
so

la
ti

o
n
 i

n
 k

W
h
/m

2

4

2

0
0 100 150 300 350200 250 400

Day of the year
50

Measurd

Est.(RLS)

Est.(KF)

Est.(EnKF)

Fig. 7. Measured and estimated global solar irradiance for region D (West).
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Fig. 8. Measured and estimated global solar irradiance for region E (Central).

MAPE =
1

n

n∑
t=1

∣∣∣∣Htm(t)−Htf (t)

Htm

∣∣∣∣ (18)

MSE =
1

n

n∑
t=1

(Htm(t)−Htf (t))
2 (19)

R =
n
∑

HtmHtf − (
∑

Htm) (
∑

Htf )√[
n
∑

H2
tm − (

∑
Htm)

2
] [

n
∑

H2
tf − (

∑
Htf )

2
]

(20)

where n is the number of measurements.

From Table II, it is seen that for all the cities, the MAPE
and MSE using EnKF method is minimal as compared to the
other two methods. It can also be seen from Table II that
the correlation co-efficie®(R) for most cases of forecasting
lies between 0.7–1, which shows strong association between
measured and forecasted values. In the majority of cases, for R
values in the EnKF estimation, they are very close to 1, which
shows that the EnKF estimation has the strongest association
between measured and estimated values as compared to the
other two algorithms

TABLE II
COMPARISION OF MAPE, MSE AND R OF DIFFERENT PLACES WITH

DIFFERENT METHODS

City Methods MAPE (%) MSE R
A RLS 7.5 0.2750 0.8868

KF 6.4 0.2527 0.9228
EnKF 2.4 0.0285 0.9866

B RLS 6.6 0.2153 0.7082
KF 10.3 0.5419 0.6118
EnKF 5.6 0.1858 0.7661

C RLS 6.5 0.2361 0.8841
KF 5.9 0.1357 0.9528
EnKF 5 0.1183 0.9361

D RLS 8 0.3059 0.9359
KF 8.8 0.4063 0.8317
EnKF 5.6 0.0893 0.9418

E RLS 6.1 0.168 0.9336
KF 7.4 0.255 0.8634
EnKF 3.7 0.0897 0.9462

The MAPE in the estimation of global solar insolation using
different methods, is shown in Fig. 9, and it is seen that for all
the cities, the MAPE error using the EnKF method is minimum
as compared to other methods. Minimum MAPE using EnKF
method is found as 2.4% for city A and maximum MAPE
value using EnKF is 5.6% for both city B and D, which
can be accepted for getting accuracy in forecasting. Fig. 10
shows the comparison of MSE in the assessment of global
solar insolation applying various methods. It has been found
that MSE value in case of EnKF estimation for all the five
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Fig. 9. Comparison of MAPE of different places with different methods.
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Fig. 11. Comparison of Correlation Coefficient ® of different places with
different methods.

cities is minimal as compared to RLS and KF. The minimum
value of MSE is 0.0285 in the EnKF estimation for city A. The
maximum value of MSE is 0.1858 for city B, which can be
accepted for estimation accuracy. Fig. 11 shows a comparison
of correlation coefficient ® (R) values in the global solar
insolation assessment using various methods and it is seen
that there is the strongest association between measured and
estimated value in each city using the EnKF algorithm as
compared to the other two methods.

In each case of estimation, it is seen that the estimated
and measured values of insolation are following very closely
and the estimation using EnKF is giving more accuracy as

compared to the others.
Table III shows a performance comparison of the proposed

EnKF algorithm with the methods used in [13] and [14].
On comparing R2 values using the EnKF algorithm with the
methods employed in [13] for day ahead forecasting, it was
found that the proposed EnKF forecasting outperforms the
algorithms used in [13] in most of the cases of forecasting with
a maximum R2 value of 0.9733 in city A. RMSE performance
of forecasting using the proposed EnKF algorithm has also
been compared with [13] and [14] and it has been found that
EnKF outperforms the methods used in the above two papers,
with a minimized RMSE value of 0.168 in city A. Comparison
of MAPE using EnKF with [14] shows that it has a very lesser
MAPE error in all cases of forecasting as compared to [14]
except in Jodhpur. The overall comparison from Table II shows
that forecasting using the proposed EnKF method outperforms
the methods used in [13] and [14].

TABLE III
PERFORMANCE COMPARISON OF PROPOSED ENKF ALGORITHM WITH

ALGORITHMS [13], [14]

Papers Locations Model/Algorithms R2 RMSE MAPE
[13] Algeria AR 0.6706 1.29 –

NAR 0.6651 1.28 –
SVR 0.6753 1.26 –
RF 0.6759 1.25 –
PER 0.5217 1.54 –

[13] Ghardia AR 0.6989 1.08 –
NAR 0.6645 1.10 –
SVR 0.6849 1.08 –
RF 0.7001 1.07 –
PER 0.5738 1.26 –

[14] Jaisalmar Multi step – 0.445 6.193
Barmer – 0.365 7.977
Bikaner – 0.333 6.968
Jodhpur – 0.367 0.474

This paper City A EnKF 0.9733 0.168 2.4
City B 0.5869 0.431 5.6
City C 0.8762 0.344 5
City D 0.8869 0.298 5.6
City E 0.8952 0.299 3.7

However, since the model has been developed on using the
data from the above five locations out of all other locations,
the accuracy in the above results requires itto be validated
again. For this, the measured values and estimated values of
insolation for a location were chosen, whose data was not used
during the model development. Place Z, is one such location
whose data was not considered during model development and
its latitude lies within the range of latitudes for the model. The
measured and estimated insolation values of place Z for a year,
using three estimation algorithms, are given in Table IV. Here
also the insolation estimation performance of EnKF is better
when compared to the other two methods. We determined from
Fig. 12 that the measured values and estimated values are very
close to each other in the case of the estimation using EnKF.
Table V shows the MAPE, MSE and R values comparison
using different methods for region Z and it is also found that,
EnKF outperforms the other two methods. Fig. 13 shows the
MAPE comparison using different methods for city Z and it
is also found that, in the case of the EnKF estimation, MAPE
is minimal, i.e., 4% as compared to the other two methods.
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TABLE IV
CITY Z (WHOSE DATA HAS NOT BEEN INCLUDED IN MODEL)

Place Inso Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Z Htm 5.74 6.41 6.83 7.03 7.00 5.04 3.93 5.05 5.81 5.91 5.85 5.58

Htc (RLS) 5.56 6.75 6.35 6.5 6.67 5.7 3.44 5.7 5.5 6.7 6.76 4.48
Htc (KF) 6 6.64 6.2 6.8 6.4 5 3.85 5.72 4.5 6.5 5.34 4.43
Htc(EnKF) 5.6 6.8 6.9 7.0 6.84 5 3.85 5.5 5.25 6.1 6.06 5.09
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Fig. 12. Measured and estimated global solar irradiance for region Z (Data
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Fig. 14 shows a comparison of MSE values in the global solar
insolation estimation for city Z and it is seen that also in this
case, MSE is minimal (0.0872) using the EnKF estimation.
Fig. 15 shows a comparison of correlation coefficient ® (R)
of city Z with different methods and it is found that the R
value in the case of the EnKF estimation is 0.9486, which
shows a stronger association of measured and estimated values

TABLE V
COMPARISION OF MAPE, MSE AND R OF CITY Z WITH

DIFFERENT METHODS

City Methods MAPE (%) MSE R
Z RLS 10 0.3853 0.7862

KF 8.8 0.4178 0.7780
EnKF 4 0.0872 0.9486
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Fig. 15. Comparison of Correlation Coefficient ® of city Z with different
methods.

as compared to the other two methods. The above results
definitely validate not only the developed model but also the
used methodologies.

IV. CONCLUSION

A method for the development of the solar insolation model
for certain regions is explained. As the forecasting of global
solar insolation primarily depends on the KT value and using
the EnKF algorithm, more accuracy in an updated KT value
was obtained, so the accuracy in forecasting is more in the
estimation using this algorithm. From the obtained results, it
is found that the forecasted value of insolation using the EnKF
method is more closely matched with the measured values
(minimum MAPE of 2.4 %, MSE of 0.0285 and R of 0.9866),
and this method can be used for any region in the world
for forecasting solar insolation. For getting more accuracy
in forecasting, measured data should be taken covering a
large range of latitudes for the selected region. Also data
available should be as accurate as possible to obtain a low
error model, in order to calculate global solar insolation for
a specific day and for a specific location. Currently, with the
help of satellites, data for certain regions can be obtained with
good accuracy. With more accurate data, using the proposed
EnKF algorithm, more accurate Fourier’s Coefficients can be
obtained to forecast the global solar insolation. Since accuracy
on forecasting of global solar insolation depends on both KT

and H0 values, proper modeling for obtaining KT and an
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accurate calculation for the H0 value of the desired location
are very essential, so more accurate modeling for KT and a
less input parameters model for the H0 calculation can be used
in the future.
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