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Abstract

In this paper, a generalised Euler-Lagrange assumed modes formulation for a manipulator
with multiple flexible links and flexible joints is presented. The general modelling scheme is
validated through computer simulations and analysis of the simplified single and two link
manipulator models, with two different combinations of links and joints, namely first, flexible
link(s) and rigid joints(s) and the second, flexible link(s) and flexible joint(s). To resolve the
control complexity associated with the under-actuated flexible link and flexible joint
manipulator, a singular perturbation model and control design for tracking are proposed with
simultaneous suppression of the tip and joint vibrations.
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1. Introduction

Research on the dynamic modelling and control of flexible manipulators has received
increased attention since the last thirty years due to their several advantages over rigid ones
[1,2]. Unlike rigid manipulators, the dynamic models of this class of manipulators incorporate
the effects of mechanical flexibilities in the links and joints. Link flexibility is a consequence
of the lightweight constructional feature of manipulator arms that are designed to achieve low
inertia for faster speeds. Similarly, joint flexibility arises because of the elastic behaviour of
the joint transmission elements such as gears and shafts. Thus, flexible manipulators undergo
two types of motion i.e. rigid and flexible motion. Because of the interaction of these motions,
the resulting dynamic equations of flexible manipulators are highly complex and, in turn, the
control task becomes more challenging compared to that for rigid robots. Therefore, a first
step towards designing an efficient control strategy for these manipulators must be aimed at
developing accurate dynamic models that can-characterise the above flexibilities along with
the rigid dynamics.

Investigations on modelling and control of flexible manipulators can be broadly classified into
two categories, namely manipulators with flexible link(s) and manipulators with flexible
joint(s). Although it is customary that the manipulators with flexibility in their links are
known as flexible manipulators in literature, the latter group of manipulators which considers
the links to be rigid but the joints to be flexible can also be categorised as flexible
manipulators.

Much work has been reported on modelling of manipulators with flexible links and rigid
joints using either the assumed mode method (AMM) [1,2,8] or the finite element method
[14,15]. Because of the complexities involved in deriving dynamic models for multi-link
flexible manipulators, most of the past work has only considered single-link cases. However,
multi-link flexible manipulators are needed because a single link flexible robot is of little use
in most practical applications.

Similarly, a number of researchers have addressed the modelling of a manipulator with joint
flexibility. The dynamic behaviour of robotic manipulators with rigid links and flexible joints
for both single and multi-link cases have been investigated in [5,12]. In these formulations,
the elastic joints of the manipulators have been modelled as linear torsional springs and the
manipulator dynamics have been described using the Lagrangian formulation.

Since it has been determined experimentally that joint flexibility exists in most manipulators
in the drive transmission systems [13], the assumption of flexible links but rigid joints is
invalid. Similarly, by considering joints to be flexible but the links to be rigid, the advantages
of achieving more favourable payload to mass ratio of the arm, low power requirement and
high speed etc. are sacrificed. Therefore, to satisfy the requirements for high speeds and good
system performance, it is necessary to consider the dynamic effects of both link and joint
flexibility. Recognising the above, coupling effects between a flexible link and flexible joint
have been addressed in [4,7, 16-18]. Two models for a single-link manipulator with both link
and joint flexibility have been derived using the Euler-Lagrange AMM, one with a set of
decoupled equations and the other with a set of coupled equations [17]. In a similar work, Lin
and Gogate [4] derived the dynamics of a manipulator with one flexible link and one flexible
joint using the Hamiltonian AMM. Subsequently, Yang and Donath [18] extended their
approach to develop a dynamic model of a two-link manipulator with link and joint
flexibility. They reported that the elasticity in each joint adds an additional degree of freedom
to the manipulator systems, which in turn results in a large variation in the dynamic behaviour
of the manipulators. However, their model does not give clear insight into the mechanisms of




joint deflection and the effects of structural damping. Lin and Gogate [7] proposed a
modelling scheme for a multi-link manipulator with both link and joint flexibility. However,
they did not consider the effects of the payload and structural damping of the links in their
model formulation. It has been shown that both the link and the joint flexibility need to be
incorporated in the modelling to achieve good trajectory tracking and quick damping of end
tip vibrations [7,17,18]. The flexible deformations produced by the joints and the links make
it difficult for the end-effctor to track a prescribed trajectory accurately. Therefore, how to
reduce the vibrations of the links and the joints is a significant concern. Studies on dynamic
simulations of one-link and two-link robot manipulators with both link and joint flexibility
have revealed that both the flexibilities need to be considered in the analysis and control of
such manipulator systems [4,7,16-18]. Therefore, in this work, both the link flexibility and the
joint flexibility are considered.

The modelling of the flexible link and joint manipulator described in this paper is different
from that of [7] and [18] in several ways. First, it follows a systematic approach for deriving
the dynamic equations for a n-link and n-joint manipulator which is accomplished by the use
of two homogeneous transformation matrices describing the rigid and flexible motions
respectively. Second, it also gives a clear picture of the joint deflection in terms of
discrepancies between link and joint angles. Unlike the model derived by Lin and Gogate [7],
the dynamic models of the manipulators in this paper consider the payload and the structural
damping of the links.

The paper is organised as follows. In section 2, a generalised Euler-Lagrange AMM
formulation for modelling of a manipulator with flexibilities in both links and joints is
presented. Subsequently using this, the dynamic equations for a single-link manipulator with
flexible link but rigid joint is derived in section 3. In following the generalized approach,
closed-form dynamic models for a manipulator with single flexible link and joint are obtained
in section 4. The development of dynamic equations for two-link flexible manipulators with
rigid and flexible joints are dealt with in sections 5 and 6 respectively. Subsequently, a two-
time-scale singularly perturbed model is proposed in section 7. Based on the two-time-scale
separation of the flexible link and flexible joint manipulator dynamics, a controller is
designed for tracking and control of tip and joint vibrations in section 8. Results
corresponding to dynamic behaviour of the different flexible manipulators with bang-bang
torque input(s) without any control actions along with performances achieved on employing
the proposed controller are presented and discussed in section 9. The paper is concluded with
a brief summary in section 10.

2. General Euler-Lagrange assumed modes formulation for modelling of multiple
flexible links and flexible joints

2.1 Description of the Manipulator System

The structure of a multiple flexible links and flexible joints manipulator is shown in Fig.1. It
consists of n flexible links and » flexible revolute joints. These links are cascaded in serial
fashion and are actuated by rotors and hubs with individual motors. An inertial payload of
mass M, and inertia I, is connected to the distal link. The proximal link is clamped and

connected to the rotor with a hub.

2.2 Flexible Link and Flexible Joint Assembly
The schematic representation for the ith flexible joint and flexible link assembly is shown in
Fig.2. The flexible joint is dynamically simplified as a linear torsional spring that works as a




connector between the rotor and the flexible link. «;, 6, are the ith rotor and link angular
positions respectively. I, is the inertia of the ith rotor and hub, where an input torque, 7,(t) is

applied. G, is the gear ratio for the ith rotor and k,; is the spring constant of the ith flexible
link (FJ);.

2.3 Assumptions
The following assumptions are made for the development of a dynamic model of the flexible

manipulator.

: & Each link is assumed to be long and slender. Therefore, transverse shear and the rotary
inertia effects are negligible.

IL. The motion of each link is assumed to be in the horizontal plane.

ITII. Links are considered to have constant cross-sectional area and uniform material
properties.

IV.  Each link is subjected to pure bending and its deflection is small.

V. Motion of the links can have deformations in the horizontal direction only.

VI.  The kinetic energy of the rotor is mainly due to its rotation only and the rotor inertia is
symmetric about its axis of rotation.
VII. The backlash of the reduction gear and coulomb friction effects are neglected.

2. 4 Kinematics Descriptions

In this section, the flexible link kinematics is described. Instead of just considering one or
two-links [18], the kinematics description is given here for a chain of n serially connected
flexible links. The co-ordinate systems of the link are assigned (Fig.l) referring to the
Denavit-Hartenberg (D-H) description [3]. X,Y, is the inertial co-ordinate frame (CF) and

XY, is the rigid body CF frame associated with the ith link and XY, is the flexible moving

i

CE,

Considering revolute joints and motion of the manipulator on a two-dimensional plane, the
rigid transformation matrix, A, from X, Y., to XY, is written as [3].

1
cosl, —sind,
Bl : (1)
sinf, cosb,
On using assumption (IV), the elastic homogenous transformation matrix, E,, due to the

deflection of the link i can be written as [2,8,14]:
v, (x;
1 _ vta(xnt) |x£ = lf-

— X

B = v, (x;,1) |x _J 1 @)
axf i i

where v, (x;,1) is the bending deflection of the ith link at a spatial point x; (0<x; <[;) and /,
is the length of the ith link. The global transformation matrix, T, transforms co-ordinates

from X, Y, to XY, follows a recursion as below [2,8,14].
T, =T E, A, :THA;' ) To =1 (3)




. X
Lt ", ):{ ( ’ )} be the position vector that describes an arbitrary point along the ith
vil%x;.t

deflected link with respect to its local CF (X,Y;) and °r, be the same point referred to XY, .
The position of the origin of X,,,Y,,, with respect to X,Y; is given by

f-Pi+1 :jri(lj) 4)
and ° p, is its absolute position with respect to XY, .

Using the global transformation matrix, °r, and ° p, can be written as:
"r="p,+T, 'r }

. (%)
0p|‘+]=0pi +T; 'pi,

2.5 Dynamic equations of motion

To derive the dynamic equations of the motion of the multiple flexible links and flexible
joints manipulator, the total energy associated with the manipulator system needs to be
computed using the kinematics for a n-links and n-joints system explained in section 2.4
(Fig.1). In the formulation of a model for a two-flexible links and joints manipulator, Yang
and Donath [18] determined the different components of the energy associated with the first
and second links separately. They assumed small angular rotation of the links in deriving the
kinetic and potential energies due to the motion of the links. For a practical manipulator, this
small angle motion assumption is invalid. Also, the approach becomes tedious for deriving
equations for a manipulator with many links and joints. Therefore, the derivation of the
dynamic equations of the multi-link flexible manipulator presented in this paper does not
assume small angular rotation. Instead of adopting only the rigid transformation matrix and
then incorporating the elastic deformation of the links [7], the use of rigid and elastic
transformation matrices makes the development in this formulation more systematic and easy.
Here, the total energy expressions of the multiple links and joints manipulator can be obtained
from the ith link and ith rotor energy expressions directly.

The total kinetic energy of the manipulator (7) is given by

T=T,+T, +T,, (6)
where T,, T, and T, are the kinetic energy associated with the rotors, links and the hubs
respectively. Using assumption (VI), the kinetic energy of the ith rotor is given by

1 .

Ty = E J; 0’552 (7
where J, =G!I,, and ¢, is the angular velocity of the rotor about the ith principal axis.
Therefore, the total kinetic energy for all the n rotors becomes

| B
T, = 3 a’ Ja (8)

where a ={a, } ; J =diag(J,);i=12,..n.

The kinetic energy of a point r;(x;) on the ith link can be written as

i
Ty = o] T (0% ) ©)
0

where p, is the linear mass density for the ith link and °F(x,) is the velocity vector. The
velocity vector can be computed by taking the time derivative of its position (5):



Dl;i(xr‘)zopi+T‘iir£(xr')+Tli’;i(xi) (10)
p; in (10) can be determined using (4,5) along with
D=1 (1) (11)

The time derivative of the global transformation matrix Ti can be recursively calculated from
[2,8,14]

T =1_A, +T A, , T =TE, +TE, (12)
Computation of A, and E, for (12) can be made as follows [8].
0 ~1
A —SAQ andE S—az— where S = (13)
ox, 1 0

Evaluation of the transpose and derivative of transpose terms of the velocity vector in (9) can
be easily accomplished by using the following identities [8]

ATA, =ETE, =S"S+I and ETE, = (I/{,,t) +S)v/(1;.1) (14)

ATA, =80, (15)
where I is the identity matrix of appropriate dimensions. After determining the kinetic energy
associated with the ith link, the kinetic energy of all the n-links can be found as:

n li
1, =32 A ()i ()i (16)
i=1 0

Referring to Fig.1 and the kinematics described in section 2.4, the kinetic energy associated
with the payload can be written as

I . . 1 ~ o/
TPL =_MPpI+Ipn+l+§IP(Qn+Vn(ln))2 (17)

2
where Q ZB +ka(l ); n being the link number, (") and () represent the first

=l
derivatives with respect to spatial variable x and time respectively. p,,, can be determined

using (4,5).

Next, neglecting the effects of the gravity, the total potential energy of the system can be
written as

U=Us+U, (18)
where U, and U, are the potential energy resulting from the elastic deflection of the links
and joints respectively. The potential energy due to the deformation of the link i can be

written as
A* v (x )
= dx. 1
j(EI) ( } , (19)

i

Therefore, for all the n-links it becomes

i J.(EI)[d v(x)] ; (20)

Let the deflection of the ith rotor be (a, — 6, ). Then the elastic potential energy for the ith
flexible joint can be written as

U, :%k.ﬂ'(ai -8, )2 2n




For n-flexible joints, the total elastic potential energy can be written in vector matrix notation
as

U, =%Ks(w—9)T(ae—9) (22)

where (EI), is the flexural rigidity of the ith link; 6 =19, } i=1,2..n and the stiffness matrix
of the joint (K,) is written as

K, =diag(k,) (23)
In fact, each link possess some internal structural damping. The link damping is modelled

with Rayleigh’s dissipation function [9]. Using this, the dissipation energy for the ith link and
jth mode can be written as

| o
Ey =5d,,-q,;’r (24)

Therefore for all the n-links, each with n, modes, the total dissipative energy in vector and
matrix form can be expressed as

1 i
E,= EqTDqT (25)

where the damping matrix, D = diag(d,.j Yo i=L2.08 j=12,0en n,; nmbeing the number of

finite modes (to be explained later); d,

; is the damping coefficient and the modal

displacement vector is g = {gu}

Using the assumption (I), the dynamics of the link at an arbitrary spatial point x, along the
link at instant of time ¢ can be written using the Euler-Beam theory as [9]
R o 3%, (x;,t
,(x; )+Pt- 7 (;;‘ )
dx dt

1

(ED); =0 (26)

where p, is the linear mass density of the ith link. Solution of (26) is accomplished with the

boundary conditions of the manipulator. Considering a clamped-mass configuration of the
manipulator, the boundary conditions can be written as [8,14]

v (x,1), , =0 27)
vi(x,0)| _, =0 (28)
9%v.(x,,1) d* | ov.(x.,1) d* | ov,(x,,1)
g, 220G L)) | gy 4 ) 29)
( ) i ax 3 - E; dt 2 ax,- i ( DE; dt 2 a X, "
83v,.(x,.,t) i d*
(EI), T . = ME,‘ E(V‘- (xf’t)lx;=li )+MDE,- ‘C‘ir—z(vf (JC; ,t) x=l; ) (30)

where M, I, are the effective mass and moment of inertias at the end of the ith link and

M p, is the contributions of masses of distal links. These are defined below.

M, I, M.
My=—1, =L M - (31)
m

? DE; = 2
; ml; ml;

A finite dimensional solution of (21) can be obtained by means of AMM [9]. Using this
method, v,(x,,#) can be expressed as a superposition of mode-shapes and time dependent

modal displacements,




v(50 = 30,06, (0 (32)
Jj=1

where ¢,(x;) and g;(t) respectively are the jth mode shape function and jth modal
displacement for the ith link. Substituting for v,(x,t) from (32) in (26) gives,

(ED), d'¢o,(» 1 d’q;() _

- =i (33)
po;(x;) dx! q; (1) dr? 4
where the constant is a)j . Separating (2.33) into spatial and temporal parts yields,
d’e,
EI
olene]
iy =0 (34)
d qu" (1)
T 04, (H=0 (35)
The time domain solution of (35) is
dij (1) = exp(&)jjl‘) (36)

and the solution of (34) is of the form

¢, (x;) = N[(cos(B;x;) —cosh(f; x,) +7; sinh( B;x;) — cosh(; x;)] 37
Y, s are given as [14]:
_sin B; —sinh B, +ME,.,B,-1-(cosﬁ,.j —cosh ;)= My, B,jz(sin B, +sinh B;)
" cos B; +cosh B; — M B;(sin B; —sinh ;) - 1\/11351_16#2 (cos B; —cosh ;)
and f3;’s are the solution of the following equation [8,14]

1+cosh B;1; cos Byl —M ;. B, (sinh B;1; —cosh B;1; sin ;1)

-1, (ﬁ,j) (sinh B;1; +cosh B,l;sin B;1)+ Mg 1, (BU) (1- coshﬁu l;sin B;1;) (39)

+M ([)',.j) (1—cosh B;1; sin B;1,) —2M . (Bu) sinh .1, =

N ’s are the constants that normalize the mode shape functions such that

li

Ny =['19, ()l dx, =m, (40)
where m, is the mass of the link i. Subsequently, the natural frequency for the jth mode and
ith link, w,

(38)

Vi

is determined from the following expression

W;p;
(EI);

u‘,

Bi = 41)

Next, to obtain a closed-form dynamic model of the manipulator, the above energy
expressions (6-25) are used to formulate the Lagrangian L=T-U . Using the Euler-
Lagrange equation

2oL 9L IE, _
dt aQ;‘ 20 aQs i

with the ith generalised co-ordinate of the system, Q;, and the corresponding generalised

(42)

forces, F,, a set of (4n + 2n,,) numbers of differential equations are obtained. In (42), Q,, and




F, are defined as follows. Q ={0.}; 0 ={x 0 qf; F={F, bi=12,....An+2n,;
F={zr 0 0}; z= {r.} and i=12,.....4n+2n,. After mathematical simplification, these

(4n + 2n, ) dynamic equations can be written in compact form as:
Je-K (0-a)=1 (43)

sl b it £ 1)
i [f:6.0)] |8.(6649) \Dg K.q 0

where M is the mass matrix, J is the modified rotor inertia matrix with its elements (J,),
f,() and f,(.)are the vectors containing terms due to Coriolis and Centrifugal forces, g,(.)
and g,(.) are the vectors containing terms due to the interactions of the link angles and their
rates with the modal displacements and their rates. The components of the above vectors are

determined by using the Christoffel symbols as [3,8]

2n42ny 420 M OM L ..
B()= i kNAT AT 45
HO= % 2 Gou g 9 -

where ¢*(.)= {f’(')}+{gl(')} and Q% = {Qf.f’“'} i=12,.2n+2n, . The stiffness matrix due
J>() g,(-)

to the distributed flexibility of the links is given by
K, =diag(k,.kp--ki, skpky.ky, ) where k; = wlim, (46)

b | y

3. Dynamic model of single-link flexible manipulator with rigid joint (Model I)

In this section, the simplest case of a dynamic model for a manipulator with one flexible link
but rigid joint is derived first. Consider one flexible link and one rigid joint (Fig.1). In the
derivation the suffix for the link and joint number are dropped for simplicity. To derive the
dynamics of a single-link manipulator with only link flexibility, the energies are determined
as follows.

Let r(x) ={ } be the position vector that describes an arbitrary point along the deflected

v(x,t)
link with respect to its local CF, XY, and °r be the same point referred to XY, . Using (5),

0 i
r can be written as:

=T, r 47
T,=A,, as T, =1 (48)
By using (11) to (15), %/ can be determined as
I e [P -

The kinetic energy due to the motion of the link can be expressed as
T
7 =5p_([°rmrdx (50)
Substitution of °# from (3) into (4) yields
§ . o "
T = % pJ-[v2 (x,00°% + x20% +97 (x,1) +2x600(x,1)]dx

Similarly, the kinetic energy associated with the payload can be found as

10




T, = %M,, (02 ()] 67 + 1267 +97 (x,0)] oy + 2069(x,)] ) (52)

As the joint is considered to be rigid, the kinetic energy due to the motion of the rotor and hub
can be written as

.= %1,9’2 (53)

The total kinetic energy of the flexible manipulator system (7) is
Te=T 4T, +1y (54)

Next, as the joint flexibility is not considered and the effect of gravity is ignored according to
assumption II, the total potential energy of the system (U ) in the present case is only due to
the strain energy of the link and can be written as

9° v(x s

x

U_.—jEI( M2 (55)

The dissipative energy due to structural damping of the links is given by
| P
E,= -Z*QTDQT (56)

where D =diag(d,), i =12..n,; d, is the damping coefficient of the ith mode.

Using the general expression (37), the ith mode shape for the single-link manipulator with
clamped-mass configuration can be written as

¢, (x) = N,[(cos(B,x) — cosh(B;x) +7; sinh( B;x) —cosh(3;x)] (57)
Setting M, =M, I, = M,I* and M, =0 in (38) for the single-link case yields
i sin 3, —sinh f, (58)

cos f3; +cosh f3,
and from (39) the eigenvalues f,’s can be determined by solving the following
transcendental equation

1+cosh ,1cos B,] — M ;B;(sinh 8,/ —cosh B,Isin B,]) =0 (59)
where M, = —A:Ii. N,’s are the normalisation constants of the mode shapes such that
m
3 2
N, =18, dx=m (60)
Subsequently, the natural frequency for the ith mode, @;, is determined from the following
expression
2
s _W0;i p
= 61
B El (61)
The dynamic equations of this manipulator on applying the Euler-Lagrange’s equations with
0= ¢ & - - ¢, F=f 0 0 0 - - . OFresulted in the following
equations with i =1,2,..n,,.
oL\ oL
—=1 (62
(89 ] ele) )

AlAL ) AL 198 ) g (63)
dt| dq, dq, g,

11




After some algebraic manipulations, the closed-form dynamic equations for a single-link
flexible manipulator with a rigid joint can be written as

MO +CO+KQ=F (64)

4. Dynamic model for a single flexible link and flexible joint manipulator (Model II)

In this section, dynamic equations for a single-link manipulator are derived considering both
the link and joint flexibility so that the resulting model can be used to study the effect of the
joint flexibility on the manipulator dynamics and provide a basis for designing a suitable
control scheme. The manipulator considered in this section is similar to that discussed in
section 3, but here the joint is considered to be flexible rather than rigid.

Using the same concept for determining the kinetic energy of the rotor, T, as explained
before, we can write

= %Jozz where J =G’I, (65)

Also the expressions for 7, and T,, are the same as determined in section 3. Therefore, the
total kinetic energy of the flexible manipulator system (7) can be determined using

T=T +T,+Ty (66)
Next, the total potential energy of the system can be written as
U=U;+U, (67)

where U is the same as expressed by equation (55) in section 3. To determine, the potential
energy due to the deflection of the joint, U,, we can follow the derivation presented in
section 2, giving:

U, =%kx(a—9)2 (68)

The damping energy of the link is the same as in (56). For the discretization of the link
flexible dynamics, the same technique as detailed through (57) to (61) can be used. Therefore,
the closed-form equations of motion of the manipulator can be obtained using the Euler-

Lagrange’s AMM with 0=l 6 ¢ ¢ - - - q"m]r and
F=[tr 000 - .. O]T. Expanding the Lagrange’s equation for different components
of O, and F. (with i=1,2..n,,) yields:
d(oL) oL
| A e 69
dt aa] do ©%)
d(JdL) oL
= | =|-==0 70
dr 88] 00 ()
s
d(aL) L 3, -
dt| dg, dg;, 9q;
After simplification the resulting equations can be written concisely as
MO +CO+KQ=F (72)

5. Modelling of a manipulator with two flexible links and two rigid joints (Model III)

In the preceding two sections, the manipulator models derived had one flexible link and one
joint (either rigid or flexible). However, a single-link manipulator has limited practical use.

12




Therefore, this section and section 6 derive dynamic equations for a manipulator with two
flexible links and two rigid joints.

Referring to Fig.1 consider two flexible links and rigid joints (in place of flexible joints). Let
the first link be clamped and a payload be connected to the tip of the second link. To develop
a simplified model with reasonable accuracy, consider two flexible modes to characterise the
link deflections for each of the links (n, =2). This is valid as the first few modes are

dominant compared to the higher modes. Referring to the derivations in section 2, the kinetic
energy of the links (i =1,2) and the payload are calculated using (9) to (17). Assuming no
flexibility in the joint, the kinetic energy associated with the ith rotor and hub can be written
as

Ty =% Iy éiz ‘ (73)
Therefore, the total kinetic energy for the two rotors and hubs becomes
T, = % BT (74)

where J =diag(1,,);i=12,...n.

Therefore, the total kinetic energy (7) becomes
T=T, +T,+T,, (75)
In the similar way to the derivations in section 2, the total potential energy (in this case only

the strain energy of the links, therefore, U = U ) can be written as
i

2 d2~ ;
U, = Z%f (ED), [%ix("—)}dx (76)

i “g
Also the energy due to structural damping of the links of the manipulator can be determined
as

1. ;
Ep=-4'Dd’ (77)

where the damping matrix, D=diag(d,.}. ), i=12; j=12; d; is the damping coefficient,

and the modal displacement vector is g = {gu}

The solution of the equation for the motion of the two flexible links and two rigid joints
manipulator with clamped-mass boundary conditions can be obtained using the general
procedures given in section 2, equations (26) to (41). In this case, the effective mass and
inertias for the links are given below.

Mg =m,+M,

Iy=Ip+1,+1, + Ml (78)

M, =(myl., + M pl, cosBy)
where [, centre of mass of link 2.

Mg, =Mp; I, =I,+M,l" and M, =0 (79)
Dynamic equations of a two flexible links and two rigid joints manipulator are derived using
the Lagrange’s equation (34) with the generalised co-ordinates, @ , consisting of the rotor

angles, link angles and the deflection variables given by Q = [9[ O 4y G G qn]r
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and the corresponding vector of generalised forces, F = [z, 7, 0 0 - - - o[, 7, and
7,are the torque applied by the rotor 1 and rotor 2 respectively. Therefore, the following
Lagrange’s equations are obtained with i=1,2 and j=1,2.

d(dJL | oL

o o e T 80
dt 89,) a6, E (0)
“d_ aL B oL +an‘D okl (81)
dr| oqy, aqu 943

|00 L, g 82)
dt anj a‘hj a‘h;‘

After some mathematical manipulations, the final dynamic equations of motion of the
manipulator can be written in compact form as:

A S (8, B)le g,(6, 9;4:4)2x! 0 0 3
M .6 (@)D 4. +{ . } +{ Rl } +{ P = (83)
o e F200,0 4] o0 82 (0,6,4,9) 11 ) 6 D, 4q K, sl 0
K, = diag (ky; k55K k) (84)

6. Dynamic model of a manipulator with two flexible links and joints (Model IV)

The next model of interest is the manipulator with two flexible links and flexible joints. This
is presented in this section and will be used for study of the elastic behaviour of the joints in
the link flexible motion. Consider two units of the n-link and n-joint manipulator (Fig.1) with
the first one clamped and a payload connected to the tip of the second link. The resulting
dynamic model can be exploited in devising control algorithms for this class of manipulator
when there is flexibility in both links and joints. With a view to obtaining a simplified model
with reasonable accuracy, two modes per link are considered i.e. j=1,2..n,, with n,=2 .

To derive the kinetic, potential and the dissipative energies associated with the manipulator,
we follow the procedure adopted in section 2. All these energy expressions can be obtained
using (6) to (25) by substituting for links (i =1,2), for two joints (i =1,2) and for two modes
(i=1.2).

The solution of the partial differential equation describing the flexible motion of the
manipulator can be obtained following the general procedures given in (21) to (35). In this
case the effective mass at the end of the individual links are set as

ME] :m2+MP;IE] =Ib2+J2+IP+MP12; Mmsl :(mzlcz+MPl2C0892)(85)
Mg, =Mp; I, =1, +Mpl* and M, =0 (86)

Here, the generalised co-ordinate vector consists of rotor positions (a,,a,), link positions
(6,,6,) and modal displacements (qy,4:>,9229)- The generalised force vector is

F={, 7, 0 0 - - - 0f , where 7,,7, are respectively the torques applied by the
rotor 1 and rotor 2. Therefore, the following Euler-Lagrange’s equations result, with i=1 and 2
and j=1 and 2.

d| oL oL

— | =— |m=— =T, (87)

dt[ad,. } da,
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i oL aL (88)
dr| 96, | 06,

d| oL | oL OE,

L4 B 5 =0 (89)
dt 8‘11;] aqh aqU

a2 ) %, P g 90)
dt a‘h_,‘ anj aq2j

The final dynamic equations of motion of the manipulator after algebraic simplifications can
be put in concise form as:
szz&_Kszxz(B_“):r (91)

M, (6, ){ } {ff(a 6)} {gl(ﬁf ﬁ,q,q)} +{ 0 }_'_{ spa (0= “)} {0} (92)
q fz(ﬁv 6) 6x1 gz(ﬂ BJq}q) 6x1 D4x4q szxzq 0

7. Two-time-scale singular perturbation model of a flexible link and flexible joint
manipulator (FLEJM)
Control of flexible link manipulators is difficult because they are under-actuated systems in
which all modes of flexure in each link have to be controlled by adjusting a single actuating
torque. This difficulty is accentuated in the case where both the links and joints are flexible
since the actuating torque for each link then has to control the flexure of both the link and its
corresponding joint. A successful solution to this control problem in such under-actuated
systems has been accomplished previously by using the singular perturbation technique
[5,6,11]. This essentially uses a perturbation parameter to divide the complex dynamic
systems into simpler subsystems at different time scales and has been successfully applied for
controlling manipulators with either flexible links or flexible joints [5,11]. Therefore, in this
work, the technique is utilised to obtain a singularly perturbed model for a manipulator where
there is flexibility in both links and joints.

To formulate a two-time-scale singular perturbation model, we proceed as follows.
Substituting §=(a— #)in (91,92), gives:

Je+K =1 (93)
0,0 8 K. é 0
el ) s G (0] o
a) |f,6.0)] |g.(6644] (Dg] (K.q) [0
As the inertia matrix, M(.) is a positive definite, its inverse, H(.) can be partitioned. Hence,

6 and § can be determined as follows.

0= _Hll (-)fI ()= I_111 (')gl fd= H12 (')gZ ()— le (')fz ()

+H,,(O)K,6-H,,()K g-H,()Dg ©3)
g=-H,,()f()-H;()g,()-Hpn(O)f,()-Hy, (g, () (96)
H, (K, g +H, (K 6-H,(.)Dg
Subtracting J @ from both the sides of (91), we can write,
b=5-0=-J"K 6+J " z-8 (97)

Now, define a common scale factor k,, which is the minimum of all the stiffness constants,
ie. k, =min(k, k., ky,ks,k, k). With this common scale factor, K, and K can be
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scaled by k, such that, K =kLK5 and K :—LKW.Defining £ =kaq, £,k 6, u =ki

c c [

and substituting, ¢ = #&, and 6= u&, into (95-97), we get,
0=—H,,(0,uE)f,(6,0)-H,,(0,u& )g,(6,6,)-H,;(0, &, )g,(0,0,u&,, us, ) i
~H,,0, 1) f,(6,6)+H,, 6, & K, 6-H,,0, uE K, q-H,,6, u&,)Dg
g, =—H,, (0, uE) f,(6,6)—Hyy (0, uE, g, (6,6, )= My (6, nE Vg, (6,0, ué,, 1E, )
~H,, (0, uE,) f,(6,6)+H,, (0, ué VK, 6-H,, (6, ué K g - Hy, (6, ué, )Dg
pe,=-J 'K &+t -0 (100)

(99)

To derive the boundary layer correction, p is set to zero [6] in (98) to (100) and on solving
for £,and &, yields

£, =K, (z-10)) (101)

£, =KJH;[-H,,(6,0)f,(6,8)-H,,(6,0)f,(8,6) —H,,(6,0)(z-J6)] (102)
where overbar denotes the value of a variable at p=0. Applying the two-time-scale

perturbation technique [5,6,11], the slow and fast subsystems can be obtained as follows.
Slow Subsystem:

0 =(M,, + 1) X[~£,(8,6)+(7 - J6)] (103)

: -
Fast Subsystem at a fast time scale, t, =— with € = L.
£

By ey (104)
0 0 I
0 5 0 |  SRUUT A S I
where A, =|-H,K, Hzllfs 0], B, = JK | xp=[n, 7 %, %1,
J—IK 0 s

s
n; =5’q—gq; nj:séq; n! =§5—E5; nf:s;”é., 0 and I matrices are of appropriate

dimensions.

8. Design of composite control scheme
Fig. 3 gives the structure for the composite controller based on the two-time-scale model of
the manipulator with two flexible links and two flexible joints given in (91,92). Following the
composite control strategy, the net torque, z can be determined as [6,11]

t=t+71; (105)
where 7 is the slow control and 7, is the fast control respectively. The controller for the

slow subsystem can be designed according to computed torque control technique, which can
be written as:

7=(M,; +3)0,()+K ,(8,()- 0(t))+ K . (6,(6) - 6()} (106)
where K and K
6,(t) are the desired trajectories of the two links. As the fast subsystem (104) is completely

are the diagonal position and velocity gain matrices of the controller and

Vs

controllable, a fast state feedback control can be devised to force its states x s to zero. This is
given by:
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dx
Ty =Kprxf +K‘,["‘E (107)
where the feedback gains K and K, are obtained through optimising the cost function

using an LQR approach [10].

9. Implementation, results and discussions

The dynamic equations characterising the behaviours of different types of flexible
manipulators derived in sections (3-6) are verified in this section. Equations describing the
models (I-IV) were simulated using the fourth-order Runge-Kutta integration method at a
sampling rate of 1ms. The physical parameters assumed for the single-link flexible
manipulator (models I and II) are the same as used in [4] and are given in Table 1. In the case
of the flexible link and flexible joint manipulator, the gear ratio, G, and the spring constant, ks
of the joint were taken as 10 and 100 Nm/rad respectively.

Models I and II were excited by a symmetric bang-bang torque input of 2 Nm and of
0.5second duration as shown in Fig.4(a). The responses of these models are given in Figs. 4
and 5. The link angular position response for model I (Fig.5(a)) is smooth, unlike the response
of the flexible manipulator with joint flexibility (Model III, Fig. 4(b)) where a substantial
amount of joint deflection (the difference between the rotor and link angular positions) exists
in the manipulator drive systems. Figs. 4(c), 5(b) and 5(c) show the first and second modes of
vibration curves for models I and II. It is evident that oscillations die out quickly for model I
but increase in time for model II. This difference is confirmed by observation of the
corresponding tip deflection responses in Figs. 4(d) and 5(d). It is clear that joint flexibility
excites oscillatory behaviour in the link angular position. Thus, it is apparent that a control
torque is needed to damp the joint deflection, the elastic modes of vibrations and the tip
deflection.

Next, the manipulators with two-flexible links and two-joints (rigid or flexible) were studied.
The physical parameters of models IIT and IV were taken from [8] and are given in Table 2.
Both the links and rotors are considered to have the same dimensions. The gear ratio (G) and
stiffness constant (k) of the flexible joints for Model IV were taken as 10 and 100 Nm/rad
respectively. The manipulator dynamic equations for models III and IV were simulated with
symmetric bang-bang torque inputs each of 0.2 Nm amplitude and 0.5 sec width applied at the
rotors (see Fig.6(a)). The responses of Models IIT and IV to these torque inputs are presented
in Figs. (6-9). It is observed from Fig. 6(b) and Fig. 7(a) that, in the case of model IV (with
flexible joints), the angular position of the first link is more oscillatory than the second link.
But, both the link position responses are not smooth. Also, these figures show that both the
link angular positions have deviations from their respective rotor positions. Figs. 8(a) and 9(a)
show that the bang-bang torque excitation causes less oscillation in the link angular positions
of Model III (without joint flexibility) as compared to those with Model IV. The amplitudes
of the first and second modes of vibrations for both the links in the case of Model IV (Figs.
6(c), 7(b), 7(c)) and the tip deflections of the links (Figs. 6(d) and 7(d)) are greater compared
to the corresponding responses of Model IIT (Figs.8(b)-8(d) and 9(b)-9(d)). Also, the first and
second modes of vibration of both the links are less excited in the case of the rigid joint
manipulator (Model III), thereby causing the tip deflections to be well damped (Figs.8(b),
8(c), 8(d), 9(b), 9(b) and 9(d)). The oscillations in modal vibrations and tip deflections of
Model IV do not decay with time, unlike the modes of vibration and the tip deflection
responses of Model III. Thus, it is clear that joint flexibility significantly affects the link
vibrations.
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The tracking performance of the singular perturbation based composite controller applied to a
manipulator with two flexible links and two flexible joints was verified considering the
desired trajectories as

£ t? z°
0,(8)=0,(1)+(6—=—15—+10—)(6; —6,) (112)

d d d

where 6,(t) = 6, 6, of, 6= [0 O] are the initial positions of the links,
0, = [E _6_} are the final positions, 7, is the time taken to reach the final position which is

taken as 2 seconds. The gains for the slow and fast control components of the composite
singular perturbation control are obtained as K, = diag(5.0,5.0) ;K , =diag(2.0,2.0);

[40 25 -13 18 283 -58.26] o _ 80 —372 -15 288 1260 58.03
" 100 -1.0 -10 00 56 86 TZl40 00 50 -30 -86 147 |

The controller performances are shown in Figs. 10 and 11. It can be seen from Fig. 10(a) that
good tracking performance is achieved through the application of the proposed controller.
Figs. 10(c), 10(d) and 11(a), 11(b) show that first and second mode of vibration of both the
links are well damped. The tip and joint deflections are also suppressed effectively while
tracking the desired trajectories (see, Figs. 10(b), 11(c)). The control signals generated for the
rotor 1 and rotor 2 using the composite controller are shown in Fig. 11(d).

10. Conclusions

A generalised modelling framework has been described to obtain the closed-form dynamic
equations of motion for a multi-link manipulator considering flexibility in the links and the
joints using the Euler-Lagrange assumed modes approach. Unlike the models derived in [18],
the model presented for a multi-link manipulator with both link and joint flexibility is a
generalised one. This is quite useful for the study of manipulators with many links and joints
that are all flexible. As compared to the model formulation in [7], the proposed model is
complete in the sense that it considers the effects of payload and structural damping of the
links. It also provides a generalized model of a manipulator with both link and joint flexibility
described by a set of closed-form differential equations satisfying the requirements for
controller implementation. The general model formulation has been exploited to obtain the
closed-form dynamic models for single and two link flexible manipulators. The model
equations have been verified using bang-bang torque inputs, and model responses have been
discussed. The two-time-scale separation of the complex dynamics of the flexible link and
flexible joint manipulator makes the control design simpler. With application of the proposed
controller to a flexible link and flexible joint manipulator, good tracking is performed and
both link and joint vibrations are suppressed effectively.
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Table 1 Parameters of the models I and IT

Parameter Value
Link length(l) 2.0m
Mass Density(p) 0.1569 Kgm™
Flexural Rigidity(EI) 31.75 Nm”

Rotor and hub Inertia(ly

0.01865 Kgm®

Payload (Mp)

0.2 Kg

Damping constants(d,, dz)

0.2

Table 2 Parameters of the models IIT and IV

Parameter Value
Mass density (p) 0.2 Kgm
Flexural rigidity(EI) 1.0 Nm*
Length (1) 0.5m
Rotor and hub Inertia(l,) 0.02 Kgm®
Payload mass (M;) 0.1 Kg
Payload Inertia (I,) 0.005 Kgm”

Damping constants

(dy1, di2, di3, d14)

0.015, 0.02, 0.015, 0.02
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