18 research outputs found

    Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface

    Get PDF
    The cell envelope of mycobacteria is a complex multilaminar structure that protects the cell from stresses encountered in the environment, and plays an important role against the bactericidal activity of immune system cells. The outermost layer of the mycobacterial envelope typically contains species-specific glycolipids. Depending on the mycobacterial species, the major glycolipid localized at the surface can be either a phenolglycolipid or a peptidoglycolipid (GPL). Currently, the mechanism of how these glycolipids are addressed to the cell surface is not understood. In this study, by using a transposon library of Mycobacterium smegmatis and a simple dye assay, six genes involved in GPLs synthesis have been characterized. All of these genes are clustered in a single genomic region of approximately 60 kb. We show by biochemical analyses that two non-ribosomal peptide synthetases, a polyketide synthase, a methyltransferase and a member of the MmpL family are required for the biosynthesis of the GPLs backbone. Furthermore, we demonstrate that a small integral membrane protein of 272 amino acids named Gap (gap: GPL addressing protein) is specifically required for the transport of the GPLs to the cell surface. This protein is predicted to contain six transmembrane segments and possesses homologues across the mycobacterial genus, thus delineating a new protein family. This Gap family represents a new paradigm for the transport of small molecules across the mycobacterial envelope, a critical determinant of mycobacterial virulence

    Cord blood IgG and the risk of severe Plasmodium falciparum malaria in the first year of life

    Get PDF
    Young infants are less susceptible to severe episodes of malaria but the targets and mechanisms of protection are not clear. Cord blood antibodies may play an important role in mediating protection but many studies have examined their association with the outcome of infection or non-severe malaria. Here, we investigated whether cord blood IgG to Plasmodium falciparum merozoite antigens and antibody-mediated effector functions were associated with reduced odds of developing severe malaria at different time points during the first year of life. We conducted a case-control study of well-defined severe falciparum malaria nested within a longitudinal birth cohort of Kenyan children. We measured cord blood total IgG levels against five recombinant merozoite antigens and antibody function in the growth inhibition activity and neutrophil antibody-dependent respiratory burst assays. We also assessed the decay of maternal antibodies during the first 6months of life. The mean antibody half-life range was 2.51months (95% confidence interval (CI): 2.19-2.92) to 4.91months (95% CI: 4.47-6.07). The rate of decline of maternal antibodies was inversely proportional to the starting concentration. The functional assay of antibody-dependent respiratory burst activity predicted significantly reduced odds of developing severe malaria during the first 6months of life (Odds ratio (OR) 0.07, 95% CI: 0.007-0.74, P=0.007). Identification of the targets of antibodies mediating antibody-dependent respiratory burst activity could contribute to the development of malaria vaccines that protect against severe episodes of malaria in early infancy

    Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation

    No full text
    Helicobacter pylori adherence in the human gastric mucosa involves specific bacterial adhesins and cognate host receptors. Here, we identify sialyl-dimeric-Lewis x glycosphingolipid as a receptor for H. pylori and show that H. pylori infection induced formation of sialyl-Lewis x antigens in gastric epithelium in humans and in a Rhesus monkey. The corresponding sialic acid-binding adhesin (SabA) was isolated with the "retagging" method, and the underlying sabA gene (JHP662/HP0725) was identified. The ability of many H. pylori strains to adhere to sialylated glycoconjugates expressed during chronic inflammation might thus contribute to virulence and the extraordinary chronicity of H. pylori infection
    corecore