1,634 research outputs found
Charging Spectrum of a Small Wigner Crystal Island
Charging of a clean two-dimensional island is studied in the regime of small
concentration of electrons when they form the Wigner crystal. The number of
electrons in the island is assumed to be not too big (N < 100). It is shown
that the total energy of the island as a function of N has a quasi-periodic
component of a universal shape, that is independent of the form of
electron-electron interactions. These oscillations are caused by the
combination of the geometric effects associated with packing of the triangular
lattice into the circular island. These effects are: the shell effect,
associated with starting a new crystalline row, and the so-called confinement
polaronic effect. In the presence of close metallic gates, which eliminate the
long-range part of the electron-electron interactions, the oscillations of the
energy bring about simultaneous entering of the dot by a few electrons.Comment: 8 pages, Latex, 8 Postscript pages are include
Screening of a hypercritical charge in graphene
Screening of a large external charge in graphene is studied. The charge is
assumed to be displaced away or smeared over a finite region of the graphene
plane. The initial decay of the screened potential with distance is shown to
follow the 3/2 power. It gradually changes to the Coulomb law outside of a
hypercritical core whose radius is proportional to the external charge.Comment: (v1) 4 pages, 1 figure (v2) Much improved introduction; extended
range of numeric
Hard collinear gluon radiation and multiple scattering in a medium
The energy loss of hard jets produced in the Deep-Inelastic scattering (DIS)
off a large nucleus is considered in the collinear limit. In particular, the
single gluon emission cross section due to multiple scattering in the medium is
calculated. Calculations are carried out in the higher-twist scheme, which is
extended to include contributions from multiple transverse scatterings on both
the produced quark and the radiated gluon. The leading length enhanced parts of
these power suppressed contributions are resummed. Various interferences
between such diagrams lead to the Landau-Pomeranchuk-Migdal (LPM) effect. We
resum the corrections from an arbitrary number of scatterings and isolate the
leading contributions which are suppressed by one extra power of the hard scale
. All powers of the emitted gluon forward momentum fraction are
retained. We compare our results with the previous calculation of single
scattering per emission in the higher-twist scheme as well as with multiple
scattering resummations in other schemes. It is found that the leading
() contribution to the double differential gluon production cross
section, in this approach, is equivalent to that obtained from the single
scattering calculation once the transverse momentum of the final quark is
integrated out. We comment on the generalization of this formalism to
Monte-Carlo routines.Comment: 30 pages, 7 figures, revtex4, typos correcte
Advances and challenges in umbilical cord blood and tissue bioprocessing: procurement and storage
Umbilical cord tissue and blood is banked to complement the rapidly advancing
field of tissue engineering and regenerative medicine for both
autologous and allogeneic therapeutic applications. Whilst many problems
concerning the use of the hematopoietic and multipotential mesenchymal
stromal cells contained therein may be addressed through the
future development of GMP-compliant manufacturing strategies, collection
and bioprocessing of these tissues can be optimised in the present
to maximise clinical outcomes. In this review, we describe current procurement,
processing and storage approaches for umbilical cord blood
and tissue; current challenges and how these may be met to augment
translation and use of therapeutics harnessing their derivatives
Dynamical frictional phenomena in an incommensurate two-chain model
Dynamical frictional phenomena are studied theoretically in a two-chain model
with incommensurate structure. A perturbation theory with respect to the
interchain interaction reveals the contributions from phonons excited in each
chain to the kinetic frictional force. The validity of the theory is verified
in the case of weak interaction by comparing with numerical simulation. The
velocity and the interchain interaction dependences of the lattice structure
are also investigated. It is shown that peculiar breaking of analyticity states
appear, which is characteristic to the two-chain model. The range of the
parameters in which the two-chain model is reduced to the Frenkel-Kontorova
model is also discussed.Comment: RevTex, 9 pages, 7 PostScript figures, to appear in Phys. Rev.
Lineage dynamics of murine pancreatic development at single-cell resolution.
Organogenesis requires the complex interactions of multiple cell lineages that coordinate their expansion, differentiation, and maturation over time. Here, we profile the cell types within the epithelial and mesenchymal compartments of the murine pancreas across developmental time using a combination of single-cell RNA sequencing, immunofluorescence, in situ hybridization, and genetic lineage tracing. We identify previously underappreciated cellular heterogeneity of the developing mesenchyme and reconstruct potential lineage relationships among the pancreatic mesothelium and mesenchymal cell types. Within the epithelium, we find a previously undescribed endocrine progenitor population, as well as an analogous population in both human fetal tissue and human embryonic stem cells differentiating toward a pancreatic beta cell fate. Further, we identify candidate transcriptional regulators along the differentiation trajectory of this population toward the alpha or beta cell lineages. This work establishes a roadmap of pancreatic development and demonstrates the broad utility of this approach for understanding lineage dynamics in developing organs
Cognitive demands of face monitoring: Evidence for visuospatial overload
Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information
Higher twist jet broadening and classical propagation
The transverse broadening of jets produced in deep-inelastic scattering (DIS)
off a large nucleus is studied in the collinear limit. A class of medium
enhanced higher twist corrections are re-summed to calculate the transverse
momentum distribution of the produced collinear jet. In contrast to previous
approaches, resummation of the leading length enhanced higher twist corrections
is shown to lead to a two dimensional diffusion equation for the transverse
momentum of the propagating jet. Results for the average transverse momentum
obtained from this approach are then compared to the broadening expected from a
classical Langevin analysis for the propagation of the jet under the action of
the fluctuating color Lorentz force inside the nucleons. The set of
approximations that lead to identical results from the two approaches are
outlined. The relationship between the momentum diffusion constant and the
transport coefficient is explicitly derived.Comment: 17 pages, 6 figures, revtex4, references added, typos corrected,
discussion update
Measuring subdiffusion parameters
We propose a method to extract from experimental data the subdiffusion
parameter and subdiffusion coefficient which are defined by
means of the relation where
denotes a mean square displacement of a random walker starting from
at the initial time . The method exploits a membrane system where a
substance of interest is transported in a solvent from one vessel to another
across a thin membrane which plays here only an auxiliary role. Using such a
system, we experimentally study a diffusion of glucose and sucrose in a gel
solvent. We find a fully analytic solution of the fractional subdiffusion
equation with the initial and boundary conditions representing the system under
study. Confronting the experimental data with the derived formulas, we show a
subdiffusive character of the sugar transport in gel solvent. We precisely
determine the parameter , which is smaller than 1, and the subdiffusion
coefficient .Comment: 17 pages, 9 figures, revised, to appear in Phys. Rev.
Three-dimensional water impact at normal incidence to a blunt structure
The three-dimensional (3D) water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is 3D and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are of main concern in this study
- …
