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19 Abstract 
20 
21 The  three-dimensional  (3D)  water  impact  onto  a  blunt  structure  with  a  spreading rectangular 
22 contact region is studied. The structure is mounted on a flat rigid plane with the impermeable 

24 curved surface of the structure perpendicular to the plane. Before impact, the water region is a 
25 

26 rectangular domain of finite thickness bounded from below by the rigid plane and above by the  flat 
27 free surface. The front free surface of the water region is vertical, representing the front of an 

29 advancing steep wave. The water region is initially advancing towards the structure at a constant 
30 

31 uniform speed. We are concerned with the slamming loads acting on the surface of the structure 

32 during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem 
33 
34 is analysed by using some ideas of pressure-impulse theory, but including the time-dependence   of 
35 

36 the wetted area of the structure. The flow caused by the impact is 3D and incompressible. The 

37 distribution  of  the  pressure-impulse  (the  time-integral  of  pressure)  over  the  surface  of       the 
38 
39 structure is  analysed and  compared  with  the  distributions  provided  by strip theories.  The  total 
40 

41 impulse   exerted   on  the  structure   during  the  impact  stage   is  evaluated   and  compared   with 

42 numerical and experimental predictions. An example calculation is presented of water impact  onto 
43 
44 a vertical rigid cylinder. Three-dimensional effects on the slamming loads are of main concern in 
45 

46 this study. 
47 
48 
49 Key words: Free-surface flows, slamming loads, three-dimensional effects 
50 
51 
52 1.   Introduction 
53 
54 The present analysis deals with the 3D effects on water impact loads. Such loads are of concern   for 
55 

56 offshore structures subjected to steep and breaking wave impact [1], tsunami bore forces on coastal 

57 structures [2-3], interaction of dry-bed surges and broken waves with buildings [4-5]. Interaction of 
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1 

2 
3 jets with obstacles is of concern in problems of violent sloshing in liquefied natural gas tanks of NO- 
4 
5 96 type [6]. The inner surface of these tanks is manufactured with tongues of length about 3 cm 
6 

7 perpendicular  to the main  flat surface. Impacts  of sloshing  waves  and  jets on  these tongues may 

8 damage the inner structure of the tank. The loads exerted on structures by such water impacts   are 
9 
10 much  higher  than  any  loads  associated  with  propagating  gravity  waves,  but  they  have    short 
11 

12 duration. The geometrical configurations of these impact problems are complicated to analyse.  The 

13 studies of the loads have been performed numerically by Computational Fluid Dynamics (CFD) and 
14 
15 Smoothed Particle Hydrodynamics (SPH) methods [7-8], or by laboratory experiments [3]. 
16 

17 
18 Theoretical studies (see [1] for review) assume simplified profiles of the wave front, either vertical, 
19 

20 parallel to the surface of the structure, or slightly inclined. In the theoretical models, the flow 
21 

22 caused by the impact is assumed to be potential, with viscous, gravity and surface tension effects 

23 neglected. It has been shown [1] that the shape of the free surface of an impacting liquid and the 
24 
25 shape of the rigid boundaries far from the place of impact provide negligible contributions to the 

26 loads. This makes it possible to consider simplified impact configurations using the geometry   near 

28 the site of impact with flat boundaries in many situations of practical importance. The simplest 
29 
30 model relies on the concept of pressure-impulse [1, 9]. In this model, the time dependence of the 
31 size of the wetted area of the structure’s surface is not included. It is assumed that the structure is 

33 wetted instantly. Only the velocity of the impact and the shape of the impact region   are important. 
34 

35 This model is well validated against numerical and experimental results [1]. The model has been 

36 applied to practical problems in two-dimensional (2D) and 3D formulations. However, the finite 
37 
38 length of the structure was not included. The finite duration of the impact was taken into account 
39 

40 by Korobkin [10] within the 2D Wagner model, where the size of the wetted part of the wall was 

41 calculated as part of the solution. 
42 
43 
44 

45 Impacts on a structure by steep, breaking and broken waves are [the most] dangerous types of 

46 impact. Such waves may entrain significant amounts of air before the impact. The water in the 
47 
48 impact region should be modelled as an aerated fluid [11]. However, the pressure impulse has been 
49 

50 shown to be independent of the air fraction in water [12]. It has also been shown that the maximum 

51 stresses in an elastic wall impacted by a breaking wave are also independent of the air fraction in 
52 
53 the impact region [13]. Truly 3D-dimensional problems of water impact are still complicated to 
54 

55 study, even within pressure-impulse theory. 
56 



 

 
 

 
1 

2 
3 Three-dimensional unsteady flow of water impact, in which the impact region is expanding in time, 
4 
5 have been solved only for lower half-spaces, with circular and elliptic contact regions on the flat 
6 

7 boundary of the flow region, of infinite extent [14-15]. The added mass of a rectangular plate 

8 descending suddenly into a flat free surface was computed by Meyerhoff [16]. Three-dimensional 
9 
10 impact problems are complicated due to the mixed type of the governing boundary value problems. 
11 

12 Mixed  boundary  value  problems  require  Neumann  and  Dirichlet  conditions  to  be  satisfied   on 

13 different portions of the boundary. Analytical studies conducted in 3D exist only for special cases of 
14 
15 violent  impact,  i.e.   water  entry  problems   [14-15]  and  for  ideal   geometries   such   as    elliptic 
16 

17 paraboloids  [17].  The  major  problem  comes  from  an  additional  unknown,  which  is  the   time- 

18 dependent contact region – the zone in which the liquid is in contact with the structure. It is in the 
19 
20 contact  region,  where  a  Neumann  boundary  condition  is  imposed  and  outside  it  a      Dirichlet 
21 

22 condition. The solutions of mixed boundary value problems are singular at the contact line – the 

23 curve which separates the parts of the boundary with different types of boundary condition. 
24 
25 
26 The most realistic model of wave impact is that which considers plunging overturning breaking 
27 
28 waves for which the current knowledge relies mainly on experiments [18-19]. This model  includes 
29 

30 too many parameters, making it not very practical from the point of view of load predictions. The 

31 essential  parameters  are  the  wave  height,  water  depth  and  the  speed  of  impact        [1].  These 
32 
33 parameters lead to a simplified approach known as steep wave impact, which assumes a vertical 
34 

35 liquid front face at the time of the impact with the structure. Under these conditions we expect   the 

36 greatest  hydrodynamic  loads.  In  the  present  study  it  is  suggested  to  exclude  the  water  depth 
37 
38 between the approaching wave and the structure from the model and consider a semi-infinite 
39 

40 rectangular  liquid  region  approaching  the  structure  at  a  constant  speed.  That  is,  as  a      wave 

41 approaches  the structure  the  wave  trough  descends  exposing the  face  of  the  structure, and the 
42 
43 forward face of  the  wave steepens  to become  parallel  to  the structure’s  vertical  front. Then   the 
44 

45 structure surface is dry just before impact. Such a situation was observed in laboratory experiments 

46 by Mogridge and Jameison [20]. We assume that the assumption of zero water depth in front of  the 
47 
48 structure provides useful estimates of the maximum loads. 
49 

50 
51 The most realistic situation that is included in the concept of steep wave impact is the dam-break 
52 

53 flow,  namely  a  volume  of  liquid  originally  at  rest  and  confined  by  a  vertical  barrier  which  is 
54 

55 suddenly  removed,  releasing  the  liquid.   Theoretical  studies   on  dam-break  flows  are     usually 

56 performed in 2D, without taking into account the presence of a structure in the path of the flow [21- 
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2 
3 27].  Three-dimensional  studies  of  dam-break  flows,  known  also  as  dry-bed  surges,  rely  on 
4 
5 numerical methods. Abdolmaleki et al. [28] simulated the impact on a vertical wall resulting from  a 
6 

7 dam-break flow. A dam-break flow and its impact on a rectangular obstacle were studied also by 

8 Aurelli  et  al.  [29].  Both  studies  were  conducted  using  the  Navier-Stokes  solver  FLUENT. Their 
9 
10 common characteristic was that, when the flow met the structure, the flow was too shallow for 
11 

12 impact. Yang et al. [30] used a 3D numerical model based on the unsteady Reynolds equations to 

13 simulate near-field dam-break flows and estimate the impact forces on obstacles. Kleefsman et al. 
14 
15 [7]  applied  a  Volume-of-Fluid  (VOF)  method  to  simulate  the  impact  of  a  dam-break  flow    on 
16 

17 rectangular  bodies.  The  cases  considered  in  [7]  resemble  flood-like  flows  and  they  cannot  be 

18 characterized as violent wave impacts. Ramsden [4] concluded that the dry-bed surges do not   lead 
19 
20 
21 

22 computed by Cummins  et  al. [8]. To the  authors’ best knowledge there have been  no  3D   studies, 

23 even using numerical methods, for complicated convex geometries, such as circular cylinders. 
24 
25 
26 

The main idea of the present study is to consider the most dangerous scenario of 3D water   impact, 
28 when the bottom around the structure is dry, or becomes dry before the impact (see Mogridge  and 
29 
30 Jamieson [20]), and a liquid mass of finite depth (and infinite extent in the horizontal directions) 
31 approaches the structure with a vertical front face moving at a constant speed (see figure 1). The 

33 outlined condition is idealized and the prediction of the impact loads should be carefully  compared 
34 

35 with the loads experienced by the structure in realistic conditions. 
36 
37 
38 We will determine the impact loads acting on the vertical rigid plate and compare them with   those 
39 

40 provided  by  2D  strip  theories.  The  loads  predicted  by  the  strip  theories  are  expected  to 

41 approximate well the 3D loads in two limiting cases: when the plate width is much larger or much 
42 
43 smaller than the water depth. The present formulation approximates the 3D impact on a vertical 
44 

45 column of rectangular section, which has been previously studied by CFD and SPH methods. The 

46 method of this paper allows us to derive closed-form relations for the pressure-impulse and the 
47 
48 total impulse exerted on the plate. The present study models the impact conditions in terms of   the 
49 

50 aspect ratio of the wetted part of the structure, and makes clear the conditions in which the 2D strip 

51 theories provide reasonable approximations of the loads. 
52 
53 
54 

55 The method is applied to the time-dependent problem of water impact onto a circular cylinder, 

56 where the vertical front of the water region initially just touches the cylinder. Then the wetted area 

to impact forces in experiments. However, such forces of large magnitude and short duration   were 
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1 

2 
3 of the cylinder surface expands in time, finally wetting half of the cylinder. The boundary of the 
4 
5 contact region is approximated by straight vertical lines, the positions of which are predicted by 2D 
6 

7 theories of water impact with (Wagner’s approach) and without (von Karman’s approach)  account 

8 for the deformation of the vertical free surface due to the impact. The forces exerted on the cylinder 
9 
10 are evaluated within the 3D impact theory. The difference between the forces predicted by the strip 
11 

12 theories and the forces from the 3D model was found to be significant. 
13 
14 
15 The study is structured as follows: in Section 2 we formulate the 3D impact problem and its 2D 
16 

17 approximations; the 3D solution of that problem is derived in Section 3, while relevant numerical 

18 results and comparisons with 2D strip theory approximations are provided in Section 4; Section 5 is 
19 

20 dedicated to the calculation of the total impulse exerted on the structure due to the impulsive 
21 

22 pressure.  The solution method is  extended in  Section  6  to tackle  the  3D  time-dependent impact 

23 problem for a circular cylinder. Time-varying hydrodynamic loads exerted on the circular   cylinder 
24 
25 are calculated. In Section 7, the results predicted by the developed method are compared with 

26 reported  numerical  and  experimental  data.  The  conclusions  are  drawn  in  Section  8  and     the 

28 supplementary material of the study is provided in Appendix A. 
29 
30 

31 
2.   The hydrodynamic boundary value problem and its 2D  versions 

33 The interaction between a liquid volume of thickness 𝐻 and a vertical rigid plate of width 2𝐿  is 
34 

35 considered in the Cartesian coordinate system 𝑥, 𝑦, 𝑧 with the origin at the centre of the plate at the 

36 water level (see figure 1). The liquid volume moves towards the plate at a uniform speed 𝑉.   The 
37 
38 liquid occupies the semi-infinite region 𝑥 > 0, −𝐻 < 𝑧 < 0 at the time of impact, 𝑡 = 0, the  time 
39 

40 when the forward front face of the wave has met the plate.  The plane 𝑧 = −𝐻  is the rigid       bottom 

41 and the plane 𝑧 = 0 is the horizontal free surface of the liquid before impact. The vertical  boundary 
42 
43 of the liquid region, 𝑥 = 0, consists of the contact region, |𝑦| < 𝐿, between the liquid and the rigid 
44 

45 plate,  and  the  liquid  free  surface,  where  |𝑦| > 𝐿.  The  liquid  is  assumed  to  be  inviscid and 

46 incompressible. Gravity and surface tension effects are neglected. During the initial stage of  impact 
47 
48 the displacements of the liquid particles are small. This makes it possible to linearize the  boundary 
49 

50 conditions and impose them on the initial position of the liquid boundary. This approximation is 

51 known as pressure-impulse theory [9]. The formulated problem is linear with mixed boundary 
52 
53 conditions on the vertical boundary of the flow region. The velocity of the flow caused by impact   is 
54 

55 described by a velocity potential which changes from 𝜙𝑏 before impact to 𝜙𝑎 after impact [9]. The 
56 
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1 

2 
3 pressure-impulse is a function of 𝑥, 𝑦, 𝑧, which is defined to be the time-integral of the pressure over 
4 
5 the short time interval [0, ∆𝑡] of impact. 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 18 
19 
20 
21 
22 
 
23 

24 Figure 1. Configuration of the water impact problem with a vertical plate. 
25 
26 
27 For small duration of the impact stage, ∆𝑡, the pressure-impulse is defined by 
28 
29 
30 

𝑃(𝑥, 𝑦, 𝑧) = −𝜌[𝜙𝑎(𝑥, 𝑦, 𝑧, 𝑡) − 𝜙𝑏(𝑥, 𝑦, 𝑧)], (2.1) 

32 
33 

34 where 𝜌 is the water density. For a uniform flow of speed 𝑉 before impact, 𝜙𝑏 = −𝑉𝑥 and 𝜙𝑎~ − 𝑉𝑥 

35 as  𝑥 → ∞.  In  Section  6  we  will  consider  𝐿  to  increase  with  time  but  for  now  we  treat  the 
36 
37 instantaneous flow. 
38 
39 
40 

The  problem  is  treated  in  non-dimensional  (tilde)  variables,  𝑥 = 𝐿𝑥̃,  𝑦 = 𝐿𝑦̃,  𝑧 = 𝐿𝑧̃,  𝜙 = 𝑉𝐿𝜙̃, 
41 
42 𝑝 = −𝜌𝑉𝐿𝜙/∆𝑡. The tildes are dropped below. The scaled boundary value problem for the non- 
43 

44 dimensional pressure impulse, 𝜙(𝑥, 𝑦, 𝑧), has the form 
45 
46 
47 𝜙𝑥𝑥 +                                                                                                                 𝜙𝑦𝑦 +                                                                                                                 𝜙𝑧𝑧 =                                                                                                                                      0, (𝑥 > 0, −∞ < 𝑦 < ∞, −ℎ < 𝑧 < 0), (2.2) 
48 
49 

50 
𝜙 = 0, (𝑥 > 0, −∞ < 𝑦 < ∞, 𝑧 = 0) and (𝑥 = 0, |𝑦| > 1, −ℎ < 𝑧 < 0), (2.3) 

52 
53 
54 
55 
56 
57 

𝜙𝑧 = 0, (𝑥 > 0, −∞ < 𝑦 < ∞, 𝑧 =  −ℎ), (2.4) 

𝜙𝑥 = 1, 
 

(𝑥 = 0, |𝑦| < 1, −ℎ < 𝑧 < 0), 
 

(2.5) 
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1 

2 
3 
4 
5 𝜙 → 0, (𝑥2 + 𝑦2 → ∞). (2.6) 
6 

7 
8 The model equations (2.2)-(2.6) contain only one parameter ℎ = 𝐻/𝐿, which is the aspect ratio of 
9 
10 the rectangular plate. Condition (2.3) follows from the linearized dynamic condition on the liquid 
11 

12 free-surface and the initial condition that the potential 𝜙 of the flow induced by the impact is zero 

13 before the impact. Condition (2.5) on the plate, accounts for the fact that the liquid hits the plate 
14 
15 with a non-zero normal velocity component, but subsequently cannot penetrate the plate, and stays 
16 

17 in sliding contact with the plate. The top and the side views of the plate at the instant of impact   are 

18 shown in the sketch of figure A.1 of the supplementary material. 
19 
20 
21 

22 For a narrow plate, ℎ ≫ 1, the potential is approximately independent of the vertical coordinate 𝑧 

23 far from the upper free-surface. Correspondingly, for a very wide plate, ℎ ≪ 1, the potential is 
24 
25 independent of the transverse coordinate 𝑦 far from the edges of the plate. These approximations 

26 correspond to the strip theory solutions, 𝜙(ℎ)(𝑥, 𝑦) and 𝜙(𝑣)(𝑥, 𝑧), where the superscripts (ℎ) and 
28 (𝑣) indicate that the strips are respectively horizontal and vertical. According to strip theory, the 
29 
30 3D plate is discretized vertically or horizontally by narrow strips perpendicular to the much longer 
31 

32 dimension of the plate. Thus, the 𝑧- or the 𝑦-variation of the potential can be omitted and     the 

33 problem is reduced  to  2D.  The  potential  𝜙(ℎ)(𝑥, 𝑦)  on  the  plate,  within  the  strip theory 
34 
35 approximation, is given by [16, 31] 
36 
37 
38 

𝜙(ℎ)(0, 𝑦) = −√1 − 𝑦2, |𝑦| < 1, ℎ ≫ 1. (2.7) 

40 
41 

42 This  approximation  is  not  valid  near  the  upper  free-surface,  𝑧 = 0,  where  the  potential should 
43 

44 approach zero as specified by condition (2.3). The following vertical strips approximation of the 

45 potential, 𝜙(𝑣)(𝑥, 𝑧), on the plate, 𝑥 = 0, −ℎ < 𝑧 < 0, has been given in references [9] and [32]; it is: 
46 
47 

48 ∞ 

49 
𝜙(𝑣)(0, 𝑧) = 

8ℎ 
∑ 

sin[(2𝑛 − 1)𝜋𝑧/(2ℎ)] 
,  ℎ ≪ 1. (2.8)

 
50  

𝜋2 
51 
52 
53 

 
𝑛=1 

(2𝑛 − 1)2 

54 The velocity potential (2.8) is not valid near the edges of the plate, 𝑦 = ±1. 
55 

56 
57 
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1 

2 
3 We shall obtain the solution of the 3D problem (2.2)-(2.6) using series comprising trigonometric 
4 
5 and Mathieu functions. Afterwards we will compare the potential 𝜙(0, 𝑦, 𝑧) on the vertical plate 
6 

7 with approximations (2.7) and (2.8) in order to find the ranges of the parameter ℎ, in which these 

8 approximations can be used. In Section 6 we will use these results to solve the problem of water 
9 
10 impact on a vertical circular cylinder, in which the half-width 𝐿 of the wetted region increases  with 
11 

12 time in a way that depends on the shape and curvature of the body being hit by the water front. 
13 
14 
15 3.   Solution of the 3D problem of wave  impact 
16 

17 The solution of the problem (2.2)-(2.6) is sought in the form 
18 
19 

∞ 
20 2 
21 𝜙(𝑥, 𝑦, 𝑧) = − 
22 ℎ 
23 
24 

∑ 𝜆−1 

𝑛=1 

𝜙𝑛(𝑥, 𝑦) sin(𝜆𝑛𝑧) , 𝜆𝑛 = 
𝜋 

(2𝑛 − 1), (3.1) 
2ℎ 

25 where the coefficients 𝜙𝑛(𝑥, 𝑦) satisfy the following mixed boundary-value problem of modified 
26 
27 Helmholtz type, in which subscripts 𝑥  and 𝑦 denote partial derivatives: 
28 
29 
30 2 
𝜙 = 0,  (𝑥 > 0), (3.2) 

𝜙𝑛,𝑥𝑥 + 𝜙𝑛,𝑦𝑦 − 𝜆𝑛 𝑛 
31 
32 
33 

34 𝜙𝑛 = 0, (𝑥 = 0, |𝑦| > 1), (3.3) 
35 
36 

37 𝜙𝑛,𝑥 = 1, (𝑥 = 0, |𝑦| < 1), (3.4) 
38 
39 
40 𝜙 → 0, (𝑥2 + 𝑦2 → ∞). (3.5) 
41 
42 
43 

44 The problem (3.2)-(3.5) was considered by Egorov [33], who investigated a rigid plate impact onto 

45 the free-surface of a weakly compressible liquid. 
46 
47 
48 

49 To  find  the  solution  of  (3.2)-(3.5)  we  consider  the  interval  𝑥 = 0, −1 < 𝑦 < 1,  as  a degenerate 

50 ellipse with semi-axes 𝑎 and 𝑏, where 𝑎 → 1 and 𝑏 → 0. A sketch of the plate represented by a 
51 
52 degenerate elliptical cylinder is shown in figure A.2 of the supplementary material. 
53 

54 
55 We use 2D elliptical coordinates (𝑢, 𝑣), defined by 𝑥 = 𝑐 sinh 𝑢 sin 𝑣 and 𝑦 = 𝑐 cosh 𝑢 cos 𝑣 where 
56 
57 𝑐 = √𝑎2 − 𝑏2 is the half distance between the foci. The fluid occupies the region 𝑢0 < 𝑢, 0 ≤ 𝑣 ≤ 𝜋 



 

10 

20 

31 

36 

 

 
1 

2 
3 where 𝑢 = 𝑢0 is the surface of the elliptical plate. For a plate of zero thickness we consider the limit 
4 
5 as 𝑎 → 1, 𝑏 → 0, 𝑐 → 1 and 𝑢0 → 0. Equation (3.2) has the following form: 
6 
7 
8 

1  
𝜕2𝜙𝑛 

𝜕2𝜙𝑛 𝜆𝑛 
2 

9 
cosh 2𝑢 − cos 2𝑣 

( 
𝜕𝑢2 

+
 

11 

12 

𝜕𝑣2 ) − 2 ( 
2 

) 𝜙𝑛 = 0. (3.6) 

13 Using  separation  of  variables  𝜙𝑛(𝑢, 𝑣) = 𝑈𝑛(𝑢)𝑉𝑛(𝑣),  equation  (3.6) provides two  differential 
14 

15 equations,   for   𝑈𝑛(𝑢)   and    𝑉𝑛(𝑣): 
16 

17 
18 𝑑2𝑈𝑛(𝑢) 

19 
𝑑𝑢2 

− (𝜎 − 2𝜇𝑛 cosh 2𝑢)𝑈𝑛(𝑢) = 0,  (0 ≤ 𝑢), (3.7) 

21 
22 

23 𝑑2𝑉𝑛(𝑣) 

24 𝑑𝑣2       + (𝜎 − 2𝜇𝑛 cos 2𝑣)𝑉𝑛(𝑣) = 0,   (0 ≤ 𝑣 ≤ 𝜋), (3.8) 
25 

26 
27 where 𝜇𝑛 = −(𝜆𝑛⁄2)2 and 𝜎 are the separation constants of the Mathieu equations. The former is 
28 

29 known as the Mathieu parameter. The boundary condition (3.3) provides 𝜙𝑛(𝑢, 0) = 𝜙𝑛(𝑢, 𝜋) = 0 

30 and yields the boundary conditions for equation (3.8), 𝑉𝑛(0) = 𝑉𝑛(𝜋) = 0. Non-trivial solutions of 

32 the periodic Mathieu equation (3.8) with zero boundary conditions exist only for certain values of 𝜎 
33 

34 known as the characteristic values of (3.8) [34]. These non-trivial solutions are known as the odd 

35 periodic Mathieu functions 𝑠𝑒2𝑚+1(𝑣, −𝑞𝑛), where 𝑞𝑛 = −𝜇𝑛 and 𝑚 is a non-negative integer. The 
37 (𝑚) 

38 
corresponding characteristic values are denoted by 𝜎𝑛     . The solution of the radial (or   modified) 

39 
Mathieu equation (3.7) with these values of 𝜎, and decaying as 𝑢 → ∞, are known as the odd radial 

40 (3) (2𝑚+1) 

41 Mathieu functions of the third kind 𝑀𝑠2𝑚+1(𝑢, −𝑞𝑛).    Then the       products  𝜑𝑛 
42 

(𝑢, 𝑣) = 
43 

(3)   (𝑢, −𝑞 )𝑠𝑒 (𝑣, −𝑞 ) satisfy Helmholtz’s equation (3.2) and conditions (3.3)  and    (3.5). 
𝑀𝑠2𝑚+1 

44 
𝑛 2𝑚+1 𝑛 

45 The boundary condition (3.4) is now 
46 
47 

48 𝜙𝑢 = sin 𝑣 , (𝑢 = 0, 0 ≤ 𝑣 ≤ 𝜋), (3.9) 
49 

50 
51 where subscript 𝑢 denotes partial derivative. To satisfy (3.9), we write 
52 
53 
54 ∞ 
55 (𝑛) (2𝑚+1) 

56 𝜙𝑛(𝑢, 𝑣) = ∑ 𝐷2𝑚+1𝜙𝑛 

57 𝑚=0 

(𝑢, 𝑣), (3.10) 



 

2𝑚+1 

2𝑚+1 

2𝑘+1 𝑛  
2𝑟+1 

2𝑟+1 

16 

39 

 

 
1 

2 
3 
4 
5 where the coefficients 𝐷

(𝑛)  
are to be determined. The body boundary condition (3.9) yields 

6 
7 

8 ∞ 9 (𝑛)      
𝑀𝑠′

(3)        (0, −𝑞 )𝑠𝑒 (𝑣, −𝑞 ) = sin 𝑣 ,  (0 ≤ 𝑣 ≤ 𝜋), (3.11) 

10 ∑ 

𝐷2𝑚+1 

11 𝑚=0 

12 
13 

2𝑚+1 𝑛 2𝑚+1 𝑛 

14 where the prime is the 𝑢-derivative. Multiplying (3.11) by 𝑠𝑒2𝑘+1(𝑣, −𝑞𝑛), integrating from 𝑣 = 0 to 

15 𝑣 = 𝜋, and using the orthogonality relation of the periodic Mathieu functions ([34]; 20.5.3), we 
17 

arrive at the following formula for the expansion coefficients 𝐷
(𝑛) 

: 
18 
19 
20 

𝜋 21 

22 
(𝑛)   = 

1 ∫ 𝑠𝑒 (𝑣, −𝑞 ) sin 𝑣 𝑑𝑣. (3.12) 
𝐷2𝑚+1  𝜋 (3)      (0,  −𝑞 ) 2𝑘+1 𝑛 

23 2 
𝑀𝑠′2𝑚+1 

24 
25 

𝑛   0 

26 Note that the periodic Mathieu functions are orthogonal in both [0, 2𝜋] and [0, 𝜋] intervals. 
27 
28 
29 

30 The integral in (3.12) is evaluated using the series expansion ([35], 8.611.3): 
31 
32 
33 ∞ 

34 𝑠𝑒 (𝑣, −𝑞 ) = ∑ 𝐵
(2𝑘+1)

 
35 𝑟=0 

36 
37 

(−𝑞𝑛) sin[(2𝑟 + 1)𝑣], (3.13) 

38 
where the coefficients 𝐵

(2𝑘+1)
 

40 
41 

of the odd periodic Mathieu functions depend on −𝑞𝑛. Then 

42 (2𝑘+1)(−𝑞  ) 
43 

(𝑛)   =  𝐵1 

𝑛     
. (3.14) 

𝐷2𝑚+1  
 

(3)     (0, −𝑞  ) 
44 𝑀𝑠′2𝑚+1 𝑛 

45 

46 
47 The potentials 𝜙𝑛(𝑢, 𝑣) are given by 
48 
49 
50 ∞ 

(3) (𝑢, −𝑞 ) 
51  
(2𝑚+1) 

𝑀𝑠2𝑚+1 𝑛 

52 
𝜙𝑛(𝑢, 𝑣) =                      ∑ 𝐵1 (−𝑞𝑛) (3)     (0, −𝑞 𝑠𝑒2𝑚+1(𝑣, −𝑞𝑛), (3.15) ) 

53  
𝑚=0 

54 

55 



 

𝑀𝑠′2𝑚+1 𝑛 

56 In the following, only the velocity potential on the plate at 𝑢 = 0, where cos 𝑣 = 𝑦, is   considered. 

57 Equations (3.1) and (3.15) provide the velocity potential on the vertical plate: 



 

) 

𝑛  
1 

2𝑚+1 𝑛  
2𝑟+1 

2𝑟+1 𝑛  
2𝑟+1 

 

 
1 

2 
3 
4 

5 ∞ ∞ 

6 𝜙(0, 𝑣, 𝑧) = ∑ ∑ 𝐶𝑚𝑛(ℎ)𝑠𝑒2𝑚+1(𝑣, −𝑞𝑛) sin(𝜆𝑛𝑧), (3.16) 
7 𝑚=0 𝑛=1 

8 
9 10 (3)     (0, −𝑞 ) 
11 

4 (2𝑚+1)(−𝑞 𝑀𝑠2𝑚+1 
𝑛   

, (3.17) 
12 

𝐶𝑚𝑛(ℎ)  =  −  
(2𝑛 − 1)𝜋  

𝐵1
 

 
 

𝑛  
𝑀𝑠′

(3)    
(0, −𝑞 ) 

13 

14 
15 

where cos 𝑣 = 𝑦 and 
16 
17 
18 

 
 
 
 
 
 
 

𝑚+1 

2𝑚+1 𝑛 

19 (3)    (0, −𝑞 4(−1) ) = 𝑐𝑒 (0, 𝑞 ). (3.18) 

20  
𝑀𝑠2𝑚+1 

21 

22 
23 

𝑛 
𝜋𝜆 𝐴

(2𝑚+1) (𝑞𝑛) 
2𝑚+1 𝑛 

24 Equation (3.18) was derived using relations for the radial Mathieu functions with negative Mathieu 

25 parameter ([34], 20.8.9 and 20.8.11), the asymptotic forms of the modified Bessel functions of  zero 
26 
27 argument, and the Wronskian of the modified Bessel functions ([34], 9.6.15). The even periodic 
28 

29 Mathieu functions are defined by 
30 
31 
32 ∞ 

33 𝑐𝑒 (𝑣, 𝑞 ) = ∑ 𝐴
(2𝑚+1)

 
34 𝑟=0 

35 
36 
37 (2𝑚+1) 

(𝑞𝑛) cos[(2𝑟 + 1)𝑣], (3.19) 

38 where 𝐴2𝑟+1 

39 
40 

(𝑞𝑛) denote the expansion coefficients of the even periodic Mathieu functions. 

41 Note that 𝑞𝑛 is related to ℎ by 𝑞𝑛 = [𝜋(2𝑛 − 1)⁄(4ℎ)]2. Taking the limits as ℎ → ∞ and ℎ → 0 we 
42 (3) (3) 

43 exploit   the  asymptotics  of  𝑀𝑠2𝑚+1(0, −𝑞𝑛)  and  𝑀𝑠′2𝑚+1(0, −𝑞𝑛)  as 𝑞𝑛 → 0  and   𝑞𝑛    → ∞, 
44 

45 respectively. Both behaviours are found from asymptotic expansions of the Bessel functions. It   can 

46 be shown that the velocity potential (3.16)-(3.17) can be reduced to the 2D strip theories (2.7) and 
47 
48 (2.8). 
49 

50 
51 4.   Numerical results 
52 

53 The double series in (3.16) are truncated, 0 ≤ 𝑚 ≤ 𝑀 and 1 ≤ 𝑛    ≤ 𝑁 and evaluated using purpose- 
54 

55 made  routines  for  computing  the  coefficients  𝐴
(2𝑚+1)

 (𝑞 ) and 𝐵
(2𝑚+1)

 (−𝑞𝑛) and the Mathieu 



 

27 

  

 
1 

2 
3 functions. In figure A.3 of the supplementary material we present a convergence study for equation 
4 
5 (3.16) based on the truncation of the involved infinite series. 
6 
7 
8 Figure 2 shows the vertical distribution of the velocity potential at the vertical section 𝑦 = 0.5, 
9 
10 given for different values of ℎ. The associate curves at the vertical section 𝑦 = 0 are shown in  figure 
11 

12 A.4  of  the  supplementary  material.  The  potential  is  symmetric  with  respect  to  𝑦 = 0.  The   3D 

13 solution  tends  to  the  2D solution  (2.7)  for  ℎ > 100.  Also,  figure  2  shows  the  velocity potential 
14 
15 calculated by the second 2D approximation (2.8), valid for ℎ ≪ 1. Here only the case ℎ = 0.5 is 
16 

17 shown. It is seen that (2.8) provides a good approximation of the potential for ℎ ≪ 1 and far from 

18 the plate edges. Near the plate edges, 3D effects are important for any ℎ. 
19 
20 
21 

22 The range of validity of the approximate solution (2.8) is shown in figure 3. This figure corresponds 

23 to the horizontal section at 𝑧⁄ℎ = −0.5. The associate results for 𝑧⁄ℎ = −1 are shown in figure A.5 
24 

25 of the supplementary material. The plots demonstrate that (2.8) can be used for ℎ < 1⁄10 over 

26 80% of the length of the plate but is invalid near the plate edges. 

28 
29 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

44 
45 
46 
47 
48 
49 
50 Figure 2. Vertical variation of the velocity potential (3.16) at 𝑥 = 0, 𝑦 = 0.5 for increasing aspect 
51 

52 ratio ℎ = 𝐻/𝐿. The thick solid line depicts the 2D solution (2.7) which is approached by the 3D 

53 solution for ℎ ≫ 1. The square symbols ‘□’ depict the 2D solution (2.8) with ℎ = 0.5. 
54 
55 
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2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
Figure 3. The velocity potential (3.16) at 𝑧⁄ℎ = −0.5 for decreasing height to length ratio ℎ = 𝐻⁄𝐿. 

25 The thick solid line corresponds to the 2D approximation (2.8), which is valid for small ℎ. 
26 
27 
28 

5.   Total impulse on the plate due to the impulsive  pressure 
30 The velocity potential 𝜙 given by (3.16) is used in this section to evaluate the total impulse acting 
31 
32 on the vertical rigid plate due to water impact. We study the dependence of the total impulse on the 
33 plate  dimensions  for  different  aspect  ratios.  The  total  impulse  on  the  plate  arises  from      the 

35 integration of the impulsive pressures over the impacted area. Cooker and Peregrine [9] define  the 
36 

37 pressure-impulse  as  the  time  integral  of  the  pressure,  over  the  short  time  interval  of  impact. 

38 According to Bagnold [36] the pressure-impulse (at a given point) is approximately constant.    This 
39 
40 is partly confirmed by the measurements of Richert [37] and suggests that the pressure-impulse   is 
41 

42 a better physical quantity to model than the peak pressure. Cooker and Peregrine [9] define the 

43 pressure-impulse as 
44 
45 
46 

47 Δ𝑡 

48 𝑃(𝑥, 𝑦, 𝑧) = ∫ 𝑝(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑡, (5.1) 
49 

0
 

50 
51 
52 

where the pressure 𝑝 is approximated by the time derivative of minus the velocity potential times 
53 
54 the water density. In accord with (5.1), the pressure-impulse 𝑃(𝑥, 𝑦, 𝑧) = −𝜌𝜙(𝑥, 𝑦, 𝑧), where 
55 

56 𝜙(𝑥, 𝑦, 𝑧) is the change in velocity potential brought about by the impact. The total impulse 𝐼, is the 

57 integral over the contact region of the pressure-impulse. Hence 
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18 
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54 

 

 
1 

2 
3 
4 

5 0    1 

6 𝐼(ℎ)                      =                       −                                    ∫                                  ∫              𝜙(0,            𝑦,             𝑧)𝑑𝑦𝑑𝑧. (5.2) 
7 

8 −ℎ −1 

9 

10 
The scale of the total impulse is 𝜌𝑉𝐿3. The velocity potential on the plate in the 3D problem is given 

12 by (3.16)  and the  2D solutions  for  ℎ ≫ 1  and ℎ ≪ 1 by (2.7) and (2.8),  respectively.  Substituting 
13 
14 (2.7) and (2.8) successively in (5.2), we obtain the following asymptotic formulae for 𝐼(ℎ): 
15 
16 
17 

𝐼(ℎ)(ℎ) = 
𝜋 
ℎ + 𝑂(1), as ℎ → ∞, (5.3) 

2 
19 
20 

22 𝐼(𝑣)(ℎ) = 
28𝜁(3) 

ℎ2~1.0855ℎ2 + 𝑜(ℎ2), as ℎ → 0, (5.4) 

23 𝜋3
 

24 
25 

26 where 𝜁(3)=1.202056903. The superscript (ℎ) in (5.3) indicates that this formula is provided by 

27 the horizontal strip theory. The superscript (𝑣) in (5.4) indicates that the vertical strip theory   is 
28 
29 used. 
30 
31 
32 

Substituting the exact formula (3.16) in (5.2) and using the associated negative Mathieu parameter 
33 
34 expressions ([34]; 20.8.4 and 20.8.5), we obtain the total impulse as a function of ℎ: 
35 
36 
37 ∞ 

38 4ℎ2 ∞ 
(−1)𝑚𝐴(2𝑚+1) (𝑞𝑛)𝑐𝑒2𝑚+1(0, 𝑞𝑛) 

39 
𝐼(ℎ) = 𝜋3 

∑ ∑ 
𝑚=0 𝑛=1 (𝑛 − 

1
) 

. 
𝑀𝑠′

(3)      (0, −𝑞 ) (5.5) 

40 2 
41 
42 

2𝑚+1 𝑛 

43 Note that the ℎ-dependence of 𝐼(ℎ) in (5.5) comes also through the Mathieu parameter 𝑞𝑛. The total 
44 
45 impulse (5.5) and the 2D approximations (5.3) and (5.4) are plotted in figure 4 as functions of the 
46 

47 aspect  ratio  ℎ.  The  range  of  interest  is  0 < ℎ < 1.  Figure  4  demonstrates  that  the  small-ℎ 

48 approximation (5.4) can be used only for 0 < ℎ < 0.3. Both approximations, 𝐼(ℎ)(ℎ) and 𝐼(𝑣)(ℎ), 
49 
50 exceed 𝐼(ℎ) in 0 < ℎ < 1 due to the 3D end-effect near the upper free-surface for 𝐼(ℎ)(ℎ) and the 
51 

52 end-effect near the vertical edges of the plate for 𝐼(𝑣)(ℎ). The graph for ℎ > 1 is shown in figure A.6 

53 of the supplementary material. We note that 𝐼(𝑣)(ℎ) and 𝐼(ℎ) differ by a constant value of order 
55 𝑂(1) due to the 3D end-effect near the upper free-surface, which is not accommodated by the 
56 
57 horizontal strip theory. 



 

 

 
1 

2 
3 
4 
5 Expression  (5.5)  is  complicated  to  evaluate,  so  we  present  polynomial  approximations  with  a 
6 

7 relative error of less than 2%, for small, medium and large ℎ: 
8 
9 
10 28𝜁(3) 

11 𝐼(ℎ) = 
12 

13 

𝜋3 
ℎ2 − 0.3ℎ3 − 0.03ℎ4,   0 < ℎ <  1, 

14 
𝐼(ℎ) = −0.64 + 1.36ℎ + 0.025ℎ2, 1 < ℎ < 5, (5.6) 

15 
16 
17 𝜋ℎ 
18 𝐼(ℎ) = −1.12 + 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

32 
33 
34 
35 
36 
37 
38 
39 
40 

,   5 < ℎ <  150. 
2 

41 Figure 4. Total impulse exerted on a vertical plate as a function of the aspect ratio ℎ = 𝐻/𝐿 in the 
42 range [0, 1]. 
43 
44 
45 

46 6.   3D water impact onto a vertical circular  cylinder 

47 The results of the previous sections, which were obtained from the pressure-impulse theory, can be 
48 
49 applied to the 3D unsteady problem of water impact onto a vertical cylinder with constant and 
50 

51 smooth horizontal cross sections. The configuration of the problem is the same as in figure 1 but 

52 with the plate replaced with a cylinder. A circular cylinder of radius 𝑅 is considered here but the 
53 
54 approach can be applied to other smooth cylindrical shapes as well. In this section the original 
55 

56 dimensional variables are used. 
57 



 

 
 

 
1 

2 
3 The early stage of water impact on the circular cylinder of radius 𝑅 is studied within both the von 
4 
5 Karman and the Wagner [38] models of the water impact (figure 5). The models are valid during 
6 

7 the initial stage, when the displacement of the wave front along the 𝑥-axis, 𝑉𝑡, is much smaller than 

8 the radius 𝑅, where 𝑉 is the speed of the water front. We shall first analyze the Wagner model. The 
9 
10 von Karman model is then a simplification of the Wagner model. 
11 
12 
13 We  assume  that  the  horizontal  dimension  of  the  wetted  part  of  the  cylinder  which is of order 
14 
15 𝑂(√𝑉𝑡𝑅) during the early stage, is comparable with the water depth 𝐻. Hence 𝑉𝑡𝑅 = 𝑂(𝐻2). Then 
16 

17 the condition 𝑉𝑡 ≪ 𝑅 implies that 𝐻 ≪ 𝑅. Therefore the 3D Wagner model can be used for vertical 

18 cylinders or panels of small curvature where the horizontal dimension of the contact region is of 
19 
20 the same order as the water depth. 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

33 
34 
35 Figure 5. Plan view of the circular cylinder showing the von Karman and the Wagner approaches to 
36 
37 the instantaneous positions of the wetted region. 
38 
39 
40 Within the Wagner model of water impact, the boundary conditions are linearized and imposed  on 
41 
42 the  initial  positions  of the  liquid  boundaries  at  the  instant  of impact, 𝑡 = 0  [38].  The size of the 
43 

44 wetted part of the cylinder, where the linearized body boundary condition, 𝜙𝑥 = 𝑉, is imposed, is 

45 governed by the Wagner condition. This condition implies that the vertical boundary of the water 
46 
47 front is continuous at contact lines, 𝑦 = ±𝑏(𝑧, 𝑡) where 𝑏(𝑧, 0) = 0. Note that, in general, the 
48 

49 unknown function 𝑏(𝑧, 𝑡) depends on the vertical coordinate 𝑧. That is, the contact region is 

50 bounded below by the bottom, 𝑧 = −𝐻, bounded above by the upper free-surface, 𝑧 = 0, and by 
51 
52 curvilinear boundaries 𝑦 = ±𝑏(𝑧, 𝑡) at the right- and left-contact lines. 
53 

54 
55 Let 𝑥 = 𝜁(𝑦, 𝑧, 𝑡) be the displacement of the wave front outside the contact region,   where 
56 

57 |𝑦| > 𝑏(𝑧, 𝑡). Then the Wagner condition provides the equation for the unknown function 𝑏(𝑧, 𝑡), 



 

14 

19 

𝑤 

50 

 

 
1 

2 
3 
4 
5 𝜁[𝑏(𝑧, 𝑡), 𝑧, 𝑡] = √𝑅2 − 𝑏2(𝑧, 𝑡) − 𝑅 + 𝑉𝑡. (6.1) 
6 
7 
8 

9 The  Wagner  condition  should  be  satisfied  together  with  the  Laplace  equation  for  the  velocity 

10 potential 𝜙(𝑥, 𝑦, 𝑧, 𝑡) in the flow region, the kinematic and dynamic boundary conditions on the free 
11 

12 surface and the body boundary condition  𝜙𝑥  = 𝑉  in  the  impact  region,  𝑥 = 0,  |𝑦| <  𝑏(𝑧, 𝑡), 

13 −𝐻 < 𝑧 < 0. The displacement of the initially vertical free surface, 𝑥 = 𝜁(𝑦, 𝑧, 𝑡), is given by the 

15 linearized kinematic boundary condition, 𝜙𝑥 = 𝜁𝑡 ,where 𝑥 = 0, |𝑦| > 𝑏(𝑧, 𝑡). The Wagner condition 
16 
17 can be readily satisfied in 2D [39] and axisymmetric [40] impact problems. In truly 3D problems  of 
18 water  impact  this  condition  is  difficult  to  satisfy  [40].  Analytical  solutions  of  the  3D     impact 

20 problems  are  known  only  for  elliptic  contact  regions  [14,  17].  In  the  von  Karman  model,  the 
21 

22 displacement of the free surface, 𝜁(𝑦, 𝑧, 𝑡), is not taken into account in the calculation of the size of 

23 the contact region. That is, the left hand-side in (6.1) is set zero which gives the width of the contact 
24 
25 region independent of the vertical coordinate 𝑧 within the von Karman model. 
26 
27 
28 

During the early stage, when 𝑏 ≪ 𝐻, we assume that the size of the contact region can be well 
29 
30 approximated by the corresponding 2D solution (independent of 𝑧) far from the upper free-surface. 
31 

32 This 2D solution suggests 
33 
34 
35 𝑏(𝑧, 𝑡) ≈ 𝑏𝑤(𝑡), (6.2) 
36 
37 
38 

where the function 𝑏 (𝑡) satisfies the following equation [41]: 
39 
40 
41 

42 𝐸 [ 
43 
44 
45 

𝑏𝑤(𝑡) 
] = 

𝑅 

𝜋 
(1 − 

2 

𝑉𝑡 

𝑅 
). (6.3) 

46 The function 𝐸 in (6.3) denotes the complete elliptic integral of the second kind. The approximation 
47 

48 (6.3) is not valid near the upper free-surface at 𝑧 = 0. The dynamic boundary condition, 𝜙 = 0,     on 

49 the upper free surface, 𝑧 = 0, implies that the horizontal components of the velocity 𝜙𝑥 and 𝜙𝑦 are 

51 zero   there.  They  are   also   zero  at   the   edge   of  the   upper   free  surface,   where  𝜙 = 0, 𝑥 = 0, 
52 

53 −∞ < 𝑦 < ∞. Then the kinematic condition, 𝜙𝑥(0, 𝑦, 𝑧, 𝑡) = 𝜁𝑡(𝑦, 𝑧, 𝑡) on the edge 𝑧 = 0 and 𝑥 =  0, 
54 

55 implies 𝜁𝑡(𝑦, 0, 𝑡) = 0 and the Wagner condition (6.1) yields √𝑅2 − 𝑏2(0, 𝑡) − 𝑅 + 𝑉𝑡 = 0. Hence, 
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49 

54 

 

 
1 

2 

3 
𝑏(0,  𝑡)    =    √2𝑅𝑉𝑡   −  (𝑉𝑡)2. (6.4) 

5 
6 

7 which is the horizontal half-length of the contact region within the von Karman model of water 
8 

9 impact. 
10 
11 

12 We assume that at each time instant 𝑡 the function 𝑏(𝑧, 𝑡) starts from the value (6.4) at 𝑧 = 0 and 
13 

14 increases monotonically with the distance from the upper free surface approaching 𝑏𝑤(𝑡) given by 

15 (6.3) as 𝑧 → −𝐻, if the water is deep enough. We cannot prove this statement at this stage. To prove 
16 
17 it, one needs to solve the 3D problem of water impact on a vertical cylinder, find the function 𝑏(𝑧, 𝑡) 
18 

19 as part of the solution and compare it with the function 𝑏𝑤(𝑡) from (6.3). 
20 
21 

22 The assumption 𝑏(0, 𝑡) ≤ 𝑏(𝑧, 𝑡) ≤ 𝑏𝑤(𝑡), where −𝐻 ≤ 𝑧 ≤ 0, allows us to estimate the 

23 hydrodynamic force 𝐹(𝑡) exerted on the circular cylinder. It is assumed that 
24 
25 
26 

27 𝐹0(𝑡) ≤ 𝐹(𝑡) ≤ 𝐹𝑤(𝑡), (6.5) 
28 
29 
30 where 𝐹0(𝑡) and 𝐹𝑤(𝑡) are the forces obtained for the contact regions |𝑦| < 𝑏(0, 𝑡) and |𝑦| < 𝑏𝑤(𝑡), 
31 

32 respectively, where −𝐻 ≤ 𝑧 ≤ 0. Note that 𝑏(0, 𝑡) and 𝑏𝑤(𝑡) (the von Karman and the Wagner 

33 dimensions of the contact region) are known functions of time from (6.3) and (6.4) such that 
34 
35 𝑏(0,0)=0 and 𝑏𝑤(0) = 0. 
36 
37 
38 

It is convenient to introduce the non-dimensional variables 
39 
40 
41 

42 𝑥 = 𝐵(𝑡)𝑥 , 𝑦 = 𝐵(𝑡)𝑦 , 𝑧 = 𝐵(𝑡)𝑧 , 𝜙 = 𝑉𝐵(𝑡)𝜙 (𝑥 , 𝑦 , 𝑧 , 𝑡), (6.6) 
43 

44 
45 where 𝐵(𝑡) = 𝑏(0, 𝑡) or 𝐵(𝑡) = 𝑏𝑤(𝑡) and the wetted part of the cylinder is |𝑦| < 𝐵(𝑡), −𝐻 ≤ 𝑧 ≤ 0. 
46 

47 The potential 𝜙 (𝑥 , 𝑦 , 𝑧 , 𝑡) satisfies the boundary-value problem (2.2)-(2.6) where ℎ = 𝐻⁄𝐵(𝑡). Note 
48 that the time 𝑡 plays the role of a parameter in the linearized hydrodynamic problem with respect 
50 to  the  velocity  potential  𝜙(𝑥, 𝑦, 𝑧, 𝑡).  Therefore,  the  non-dimensional  potential  𝜙 (𝑥 , 𝑦 , 𝑧 , 𝑡)  in  the 
51 

52 contact  region,  𝑥  = 0,  |𝑦 | < 1,  −ℎ(𝑡) < 𝑧  < 0,  is  given  by  (3.16).  The  hydrodynamic  force  𝐹𝐵(𝑡) 

53 calculated within the linearized model with the width of the contact region being 2𝐵(𝑡) is given by 
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3 0 𝐵(𝑡) 
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0         𝐵(𝑡) 
𝑑 

5 𝐹𝐵(𝑡)  =  −𝜌   ∫ ∫ 𝜙𝑡(0, 𝑦, 𝑧, 𝑡)𝑑𝑦𝑑𝑧 = −𝜌 
𝑑𝑡 
∫ ∫   𝜙(0, 𝑦, 𝑧, 𝑡)𝑑𝑦𝑑𝑧 

6 −𝐻                          −𝐵(𝑡) 

7 
8  
𝑑 

−𝐻 −𝐵(𝑡) 

0 1 
(6.7) 

9 = −𝜌 
10 
11 
12 

𝑑𝑡 
[𝑉𝐵3(𝑡) ∫    ∫ 𝜙 (0, 𝑦 , 𝑧 , 𝑡)𝑑𝑦 𝑑𝑧 ]. 

−ℎ(𝑡)   −1 

13 
In (6.7) we use the condition that the potential 𝜙 is zero along the lines 𝑦 = ±𝐵(𝑡), −𝐻 ≤ 𝑧 ≤ 0. 

14 
15 The double integral in (6.7) is equal to −𝐼(ℎ), where the total impulse, 𝐼(ℎ), introduced by (5.2) is 
16 

17 given by (5.5). Therefore 
18 
19 
20 𝑑 3 

21 𝐹𝐵(𝑡) = 𝜌𝑉 
𝑑𝑡 

{𝐵 
22 
23 

(𝑡)𝐼[𝐻⁄𝐵(𝑡)]} = 𝜌𝑉𝐵2 (𝑡)𝐵  (𝑡)[3𝐼(ℎ)  − ℎ𝐼′(ℎ)], (6.8) 

24 where dot denotes time derivative and ℎ = 𝐻⁄𝐵(𝑡). The total impulse 𝐼(ℎ) was investigated  in 
25 
26 Section 5 and 𝐼′(ℎ) is found numerically. During the early stage, 𝐵(𝑡) ≪ 𝐻, formula (5.3) implies 
27 

28 𝐼(ℎ)~ 𝜋ℎ⁄2 as ℎ → ∞. Hence 
29 
30 
31 𝐹𝐵(𝑡)~𝜋𝜌𝑉𝐵  (𝑡)𝐵(𝑡)𝐻 (6.9) 
32 
33 
34 

as ℎ → ∞, where 2𝐵(𝑡)𝐻 is the impact area at time 𝑡. The hydrodynamic force can be normalized as 
35 
36 
37 

38 𝐹𝐵(𝑡) 
=

 
39  𝐹𝐵,𝑠𝑐(𝑡) 
40 
41 

3𝐼(ℎ) − 
ℎ𝐼′(ℎ) 

𝜋ℎ 

= 𝐹̃𝐵(ℎ), (6.10) 

42 
where the force scale 𝐹𝐵,𝑠𝑐(𝑡) is given by the right-hand side of (6.9). Equation (6.10) shows that 

44 the non-dimensional force 𝐹̃𝐵(ℎ)  depends on a single parameter ℎ.  Here 𝐹̃𝐵(ℎ) → 1 as ℎ → ∞ and 
45 

46 𝐹̃𝐵(ℎ) ≈ 28𝜁(3)ℎ⁄𝜋4  as  ℎ → 0,  as  follows  from  (5.4).  The  forces  𝐹̃𝐵(ℎ)  calculated  for  𝐵 = 𝑏(0, 𝑡) 
47 

48 and 𝐵 = 𝑏𝑤(𝑡) provide bounds for the hydrodynamic force 𝐹𝐵(𝑡)⁄𝐹𝐵,𝑠𝑐(𝑡) computed for  the 3D 

49 contact region within the Wagner approach. The function 𝐹̃𝐵(ℎ) is depicted in figure 6 and clearly 
50 
51 complies with the asymptotics 𝐹̃𝐵(ℎ) → 1 as ℎ → ∞ and 𝐹̃𝐵(ℎ)~ 28𝜁(3)ℎ⁄𝜋4 ≈ 0.3455ℎ as ℎ → 0. 
52 
53 

54 The 2D approximation of the hydrodynamic force (6.9), normalized by (1⁄2)𝜋𝜌𝑉2𝐻𝑅 reads 
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𝑑(𝐵⁄𝑅) 

(𝐵⁄𝑅), (6.11) 
𝑑𝜏 

8 where 𝜏 = 𝑉𝑡⁄𝑅 is the scaled time. Taking 𝐵 = 𝑏(0, 𝑡) for the von Karman model, we find 
9 

10 
11 𝑓𝐵 = 2(1 − 𝜏), for 𝐵 = 𝑏(0, 𝑡). (6.12) 
12 
13 
14 

15 For the Wagner model with 𝐵 = 𝑏𝑤(𝑡) we use (6.3) and, after some algebra, we obtain 
16 
17 
18 𝜋(𝐵⁄𝑅)2

 

19 𝑓𝐵 =            
𝐾(𝐵⁄𝑅)         −         𝐸(𝐵⁄𝑅)       

,       for         𝐵            =           𝑏𝑤(𝑡), (6.13) 
20 
21 

22 
where 𝐾(𝐵⁄𝑅) denotes the complete elliptic integral of the first kind. Equations (6.12) and (6.13) 

24 provide  the  2D  von Karman and Wagner  approximations,  respectively,  of the  force  exerted on a 
25 

26 circular  cylinder.  The  force  (6.13)  was  derived  by  Korobkin  [41,  figure  4],  with  a       different 

27 normalization. The 2D approximations (6.12) and (6.13) are compared with the 3D force (6.8). 
28 
29 Using (6.8) and (6.10) it can be shown that the hydrodynamic force is 
30 
31 

33 𝑓   = 
𝐹𝐵(𝑡) 

= [2 𝐵 (1⁄2)𝜋𝜌𝑉2𝐻𝑅 
𝑑(𝐵⁄𝑅)  
𝜀 

(𝐵⁄𝑅)] 𝐹̃𝐵 ( 𝑑𝜏 

 
), (6.14) 

34 𝐵⁄𝑅 
35 

36 
37 where  𝜀 = 𝐻⁄𝑅 denotes the aspect ratio of the circular cylinder. The term in brackets is given  by 
38 
39 (6.12) and (6.13) for the von Karman and the Wagner models, respectively. Figure 7 compares   the 
40 forces predicted by the 2D approximation and the present 3D method for  𝜀 = 1 , using both models 

42 of wave impact. As implied by (6.12) the 2D force 𝑓𝐵 from the von Karman model with 𝐵 = 𝑏(0, 𝑡) 
43 
44 decreases linearly from 2 with increasing 𝜏. It is interesting to observe that the 2D Wagner 
45 

46 approach for 𝐵 = 𝑏𝑤(𝑡) leads to a nearly linear decay of the force. In both cases the maximum non- 

47 dimensional force occurs at the first instant of impact and then decay, while the contact region 
48 

49 widens.  As  expected,  the  Wagner  approach  leads  to  larger  hydrodynamic  loads  than  the   von 

50 Karman approach due to the larger area of the contact region. 
51 
52 
53 

54 The results obtained using the present method, in particular (6.14), show a notable difference 

55 between  the  2D  and  3D  forces  for  both  models  employed.  However,  the  2D     approximations 
56 
57 reproduce  well  the  maximum  loading that  occurs at  𝜏 = 0.  The  3D  forces  are smaller and decay 
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3 much quicker with time than their 2D approximations. The forces from the 2D strip approach 
4 
5 overestimates considerably the actual loading exerted on the circular cylinder. 
6 
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27 Figure 6. Non-dimensional hydrodynamic force (6.10) as a function of 1⁄ℎ. 
28 
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42 
43 
44 
45 
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47 
48 

49 Figure 7. The non-dimensional hydrodynamic forces 𝑓𝐵(𝜏) by 2D von Karman model (6.12) and 2D 

50 Wagner model (6.13), and the 3D model (6.14) as functions of the non-dimensional time 𝜏 = 𝑉𝑡⁄𝑅 
51 
52 for 𝐻⁄𝑅 = 1. 
53 

54 7.   Validation 

55 The 3D theory of water impact developed in this paper can be applied to structures with either  flat 
56 
57 or convex surfaces. To validate this theory, the theoretical total impulse is compared with that for 
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26 

 

 
1 

2 
3 the 3D wave impact onto a rectangular column with the wave front resembling the face of a steep 
4 
5 wave, see [8]. The simulated case concerned a dam-break flow impact onto a rectangular column 
6 

7 with square cross section 0.12×0.12m. The distance between the column and the dam was 0.5m. 

8 The water front arrived at the column about 0.25s after the flow starts. Cummins et al. [8] studied 
9 
10 this  problem  numerically by a SPH method  and compared the   forces  and the  total impulse  with 
11 

12 experimental results. The total impulse on the column was evaluated by 
13 
14 

15 𝑡 

16 𝐼(𝑡) = ∫|𝐹(𝜏)|𝑑𝜏, (7.1) 
17 

18 
0

 

19 
20 

where |𝐹(𝜏)| is the magnitude of the hydrodynamic load exerted on the column. Figure 5 in [8] 

22 shows a nearly vertical front face of the dam-break wave at the instant of impact, the height of 
23 

24 which is estimated to be 𝐻 = 0.16 m which leads to the aspect ratio ℎ ≈ 2.6 in our theory. It is 
25 difficult  to  extract  the  velocity  of  the  wave  front   from   both  the  numerical  results  and       the 

27 experimental measurements presented in [8]. The velocity of the wave front is assumed equal to 
28 

 

29 the critical velocity 𝑉 = √𝑔𝐻 ≈ 1.3 m/s, where 𝑔 is the gravitational acceleration. Using the scale of 
30 

31 the  total  impulse,  0.28  Ns,  and  approximation  (5.6)  for  the  non-dimensional  total        impulse, 

32 𝐼(2.6) ≈ 3.15,  the  dimensional  total  impulse  is  0.88  Ns,  while  figure  8  in  Cummins  et  al. [8] 
33 
34 estimates the total impulse, up to the instant of the maximum loading, to be about 0.9 Ns. This 
35 

36 favorable agreement verifies the efficacy of the developed 3D impact theory of this paper. 
37 
38 
39 8.   Conclusions 
40 

41 The  3D  hydrodynamic  loads  exerted  on  a  rigid  plate  of  finite  dimensions  by  the  impact  of   a 

42 rectangular   liquid   region   have   been   studied   within   the   pressure-impulse   theory.   The   3D 
43 
44 distributions of pressure-impulse over the plate have been determined. The effect of the plate 
45 

46 aspect ratio on the pressure-impulse distributions has been studied. Both the pressure-impulse and 

47 the total impulse (the time-integral of the hydrodynamic force), are strongly dependent on the 3D 
48 
49 effects. The 2D approximations of the total impulse provided by the strip theory can be used with 
50 

51 vertical strips if the water depth is one-tenth of the width of the plate, and with horizontal strips 

52 and a correction by an additive constant (of value about -1.12) if the water depth is three times 
53 
54 larger than the width of the plate. 
55 

56 The developed 3D pressure-impulse theory has been extended to tackle the 3D unsteady problem 

57 of water impact onto a circular cylinder. Both the von Karman and the Wagner models of water 
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1 

2 
3 impact have been employed. The new model of 3D impact assumes straight vertical contact lines 
4 
5 provided either  by  the  von  Karman or the  Wagner  2D  models. The  pressure distribution in such 
6 

7 contact  regions  is  given  by  the  3D  theory.  This  new  3D  model  provides  bounds  on  the 

8 hydrodynamic force. Closed-form relations have been derived for both 2D and 3D approaches using 
9 
10 both models of wave impact. It has been shown that the 3D hydrodynamic force exerted on the 
11 

12 cylinder and normalized by the force provided by the 2D strip theory approximation, is a function 

13 of only the horizontal dimension of the contact region. Also, it has been shown that the 2D approach 
14 
15 significantly  overestimates  the  hydrodynamic  load  on  the  cylinder.  This  finding  concerns both 
16 

17 models of impact. Further, it was found that the maximum loading occurs at the start of impact, and 

18 is well reproduced by the 2D approaches. The 3D forces decay with time much faster than their   2D 
19 

20 approximations. 
21 

22 
23 The present study of 3D effects on impact loads is limited to simplified impact geometry.  However, 
24 
25 the methods and estimates obtained are expected to be valuable for practical applications such as 

26 tsunami bore, dry-bed surges, breaking and broken wave impact on coastal and offshore structures. 
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30 Figure 1. Configuration of the water impact problem with a vertical plate. 
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30 Figure 2. Vertical variation of the velocity potential (3.16) at x=0,y=0.5 for increasing aspect ratio h=H/L. 

31 The thick solid line depicts the 2D solution (2.7) which is approached by the 3D solution for h≫1. The square 

32 symbols ‘□’ depict the 2D solution (2.8) with h=0.5. 
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30 Figure 3. The velocity potential (3.16) at z⁄h=-0.5 for decreasing height to length ratio h=H⁄L. The thick 

31 solid line corresponds to the 2D approximation (2.8), which is valid for small h. 
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30 Figure 4. Total impulse exerted on a vertical plate as a function of the aspect ratio h=H/L in the range [0, 

31 1]. 

32 318x216mm (72 x 72 DPI) 

33 
34 
35 
36 
3738 
39 
40 
41 

42 
43 
44 

 

 
1 



 

 
For 

2 
3 
4 
5 
6 
7 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 
29 

Figure 5. Plan view of the circular cylinder showing the von Karman and the Wagner approaches to the 
30 

instantaneous positions of the wetted region. 
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30 Figure 6. Non-dimensional hydrodynamic force (6.10) as a function of 1⁄h. 
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30 Figure 7. The non-dimensional hydrodynamic forces  f_B (τ) by 2D von Karman model (6.12) and 2D 

31 Wagner model (6.13), and the 3D model (6.14) as functions of the non-dimensional time τ=Vt⁄R for H⁄R=1. 
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Figure A.1. Top and side views of the problem at the instant of impact; dimensionless variables. 
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47 Figure A.2. Coordinates for the plate of elliptical cross section. 
232x305mm (96 x 96 DPI) 



 

 

 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 
26 
27 
28 
29 
30 Figure A.3. Convergence study for the velocity potential (3.16) on the plate (x=0) close to its edge (y=0.95) 

31 for h=1. Here z varies on the plate from -1 (bottom) to 0 (upper free-surface). The truncation of the order 

32 of the Mathieu functions is M and N is the truncation of the vertical eigenfunctions with values shown in the 
caption legend. 33 

318x216mm (72 x 72 DPI) 
34 
35 
36 
37 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 



 

 

 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 
26 
27 
28 
29 
30 Figure A.4. Vertical variation of the velocity potential (3.16) at x=0,y=0 for increasing aspect ratio h=H/L. 

31 The thick solid line depicts the 2D solution (2.7) which is valid for h≫1. The square symbols ‘□’ depict the 2D 

32 solution (2.8) with h=0.5. 
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30 Figure A.5. The velocity potential (3.16) at z⁄h=-1 for decreasing height to length ratio h=H⁄L. The thick 

31 solid line corresponds to the 2D approximation (2.8), which is valid for small h. 
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 Figure A.6. Total impulse exerted on a vertical plate as a function of the aspect ratio h=H/L in the range [1, 

 10]. 
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