134 research outputs found

    Decision Making Art -- or Science

    Get PDF

    Decision Making: Art - or Science

    Get PDF

    Risk of Climate-Related Impacts on Global Rangelands – A Review and Modelling Study

    Get PDF
    Climate change threatens the ability of global rangelands to provide food, support livelihoods and deliver important ecosystems services. The extent and magnitude of potential impacts are however poorly understood. In this study, we review the risk of climate impacts along the rangeland systems food supply chain. We also present results from biophysical modelling simulations and spatial data analyses to identify where and to what extent rangelands may be at climatic risk. Although a quantification of the net impacts of climate change on rangeland production systems is beyond the reach of our current understanding, there is strong evidence that there will be impacts throughout the supply chain, from feed and animal production to processing, storage, transport, retailing and human consumption. Regarding grazing biomass production, this study finds that mean herbaceous biomass is projected to decrease across global rangelands between 2000 and 2050 under RCP 8.5 (-4.7%), while inter- (year-to-year) and intra- (month-to-month) annual variabilities are projected to increase (+21.3% and +8.2%, respectively). These averaged global estimates mask large spatial heterogeneities, with 74% of global rangeland area projected to experience a decline in mean biomass, 64% an increase in inter-annual variability and 54% an increase in intra-annual variability. The potentially most damaging vegetation trends for livestock production (i.e., simultaneous decreases in mean biomass and increases in inter-annual variability) are projected to occur in rangeland communities that are currently the most vulnerable (here, with the lowest livestock productivities and economic development levels and with the highest projected increases in human population densities). Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems to climatic changes over time. Consequently, adaptation choices will need to build on robust methods of designing, implementing and evaluating detailed development pathways, and account for a wide range of possible futures

    Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye

    Get PDF
    Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Mu ̈ ller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss

    Habitat area and climate stability determine geographical variation in plant species range sizes

    Get PDF
    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ∼ 85 000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity
    corecore