47 research outputs found
Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis
A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres
Background: Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the cause of one of barley’s most important diseases, net form of net blotch. Here we report the first genome assembly for this species based solely on short Solexa sequencing reads of isolate 0-1. The assembly was validated by comparison to BAC sequences, ESTs, orthologous genes and by PCR, and complemented by cytogenetic karyotyping and the first genome-wide genetic map for P. teres f. teres. Results: The total assembly was 41.95 Mbp and contains 11,799 gene models of 50 amino acids or more. Comparison against two sequenced BACs showed that complex regions with a high GC content assembled effectively. Electrophoretic karyotyping showed distinct chromosomal polymorphisms between isolates 0-1 and 15A, and cytological karyotyping confirmed the presence of at least nine chromosomes. The genetic map spans 2477.7 cM and is composed of 243 markers in 25 linkage groups, and incorporates SSR markers developed from the assembly. Among predicted genes, non-ribosomal peptide synthetases and efflux pumps in particular appear to have undergone a P. teres f. teres-specific expansion of non-orthologous gene families. Conclusions: This study demonstrates that paired-end Solexa sequencing can successfully capture coding regions of a filamentous fungal genome. The assembly contains a plethora of predicted genes that have been implicated in a necrotrophic lifestyle and pathogenicity and presents a significant resource for examining the bases for P. teres f. teres pathogenicity
Aurafuron A and B, New Bioactive Polyketides from Stigmatella aurantiaca and Archangium gephyra (Myxobacteria)
Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca
Steroids, such as cholesterol, are synthesized in almost all eukaryotic cells, which use these triterpenoid lipids to control the fluidity and flexibility of their cell membranes. Bacteria rarely synthesize such tetracyclic compounds but frequently replace them with a different class of triterpenoids, the pentacyclic hopanoids. The intriguing mechanisms involved in triterpene biosynthesis have attracted much attention, resulting in extensive studies of squalene-hopene cyclase in bacteria and (S)-2,3-oxidosqualene cyclases in eukarya. Nevertheless, almost nothing is known about steroid biosynthesis in bacteria. Only three steroid-synthesizing bacterial species have been identified before this study. Here, we report on a variety of sterol-producing myxobacteria. Stigmatella aurantiaca is shown to produce cycloartenol, the well-known first cyclization product of steroid biosynthesis in plants and algae. Additionally, we describe the cloning of the first bacterial steroid biosynthesis gene, cas, encoding the cycloartenol synthase (Cas) of S. aurantiaca. Mutants of cas generated via site-directed mutagenesis do not produce the compound. They show neither growth retardation in comparison with wild type nor any increase in ethanol sensitivity. The protein encoded by cas is most similar to the Cas proteins from several plant species, indicating a close evolutionary relationship between myxobacterial and eukaryotic steroid biosynthesis
In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: Biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases
Microorganisms produce iron-chelating compounds to sequester the iron essential for growth from the environment. Many of these compounds are biosynthesized by nonribosomal peptide synthetases, some in cooperation with polyketide synthases. Myxochelins are produced by the myxobacterium Stigmatella aurantiaca Sg a15, and the corresponding gene cluster was cloned recently. We have undertaken to express heterologously the myxochelin biosynthetic machinery in Escherichia coli. To activate the involved proteins posttranslationally, they were coexpressed with the phosphopantetheinyltransferase MtaA from the myxothiazol biosynthetic gene cluster. Phosphopantetheinylation of the carrier proteins could be verified by protein mass analysis. Six active domains in proteins MxcE, MxcF, and MxcG are capable of assembling myxochelin from ATP, NAD(P)H, lysine, and 2,3-dihydroxybenzoic acid in vitro. This fact demonstrates that the condensation domain of MxcG performs two condensation reactions, creating the aryl-capped α-amide and the aryl-capped γ-amide of the molecule. A previously unknown type of reductive release is performed by the reduction domain of MxcG, which alternatively uses NADPH and NADH to set free the peptidyl-carrier protein-bound thioester as an aldehyde and further reduces it to the alcohol structure that can be found in myxochelin A. This type of reductive release seems to be a general mechanism in polyketide and nonribosomal peptide biosynthesis, because several systems with C-terminal similarity to the reductase domain of MxcG can be found in the databases. Alternatively, the aldehyde can be transaminated, giving rise to a terminal amine
A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria
Short chain carboxylic acids are well known as the precursors of fatty acid and polyketide biosynthesis. Iso-fatty acids, which are important for the control of membrane fluidity, are formed from branched chain starter units (isovaleryl-CoA and isobutyryl-CoA), which in turn are derived from the degradation of leucine and valine, respectively. Branched chain carboxylic acids are also employed as starter molecules for the biosynthesis of secondary metabolites, e.g. the therapeutically important anthelmintic agent avermectin or the electron transport inhibitor myxothiazol. During our studies on myxothiazol biosynthesis in the myxobacterium, Stigmatella aurantiaca, we detected a novel biosynthetic route to isovaleric acid. After cloning and inactivation of the branched chain keto acid dehydrogenase complex, which is responsible for the degradation of branched chain amino acids, the strain is still able to produce iso-fatty acids and myxothiazol. Incorporation studies employing deuterated leucine show that it can only serve as precursor in the wild type strain but not in the esg mutant. Feeding experiments using C-13-labeled precursors show that isovalerate is efficiently made from acetate, giving rise to a labeling pattern in myxothiazol that provides evidence for a novel branch of the mevalonate pathway involving the intermediate 3,3-dimethylacryloyl-CoA. 3,3-Dimethylacrylic acid was synthesized in deuterated form and fed to the esg mutant, resulting in strong incorporation into myxothiazol and iso-fatty acids. Similar experiments employing Myxococcus xanthus revealed that the discovered biosynthetic route described is present in other myxobacteria as well
