1,037 research outputs found

    A comparative study of a bio fuel cell with two different proton exchange membrane for the production of electricity from waste water

    Get PDF
    In the present study, electricity generation with waste water as substrate was investigated in a two compartment biofuel cell with two different combinations of electrodes and membrane. Two proton exchange membranes namely nafion and agar salt bridge and aluminum as electrode were used in the biofuel cell. It was found that biofuel cells operated with nafion produce maximum voltage 0.504 V with a current density of 0.1 A/m2 whereas in case of agar salt bridge maximum voltage of 0.145 V with a current density of 0.05 A/m2 was obtained. The more voltage produced in case of nafion is attributed to its low resistance for hydrogen ion transport

    Inequity in the Utilization of Maternal-Health Care Services in South Asia: Nepal, India and Sri Lanka

    Get PDF
    To review the inequities in utilization of Skilled Birth Attendants (SBA) and institutional delivery services using “Three Delays framework” to categorize and explain socio economic determinants in Nepal, India and Sri Lanka. Design: This is an article review which adopted narrative synthesis (a mixed method approach). Literature search was conducted from a relevant database including: Scopus, ProQuest and PubMed. The search was performed using developed list of search terms to find out published papers from Nepal, India and Sri Lanka. The paper also used data from Nepal Demographic Health Survey (NDHS, 2011), National Family Health Survey, India (NFHS, 2006) and Sri Lanka Demographic Health Survey (DHS, 2007). Findings: From 438 articles, sixteen studies were included, from Nepal, India and Sri Lanka. Findings were organised under three delays themes: (1) deciding to seek health care by women and/or her family, (2) Reaching health care facility and (3) Receiving adequate and appropriate health care at the facility. The evidence from these studies showed wide variation in use of maternal health services exist both between and within respective countries. These differences are affected by education, distance, lack of transportation, cost of transportation and cost of delivery at hospitals. Key conclusions: This study has shown high variations in the use of maternal health care services in South Asian countries. Nepal and India had lower access and higher inequalities in utilization of SBAs at delivery and institutional delivery by socio-economic determinants compared with Sri Lanka

    Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson's disease and depression.

    Get PDF
    Small molecules that increase the presynaptic function of aminergic cells may provide neuroprotection in Parkinson's disease (PD) as well as treatments for attention deficit hyperactivity disorder (ADHD) and depression. Model genetic organisms such as Drosophila melanogaster may enhance the detection of new drugs via modifier or 'enhancer/suppressor' screens, but this technique has not been applied to processes relevant to psychiatry. To identify new aminergic drugs in vivo, we used a mutation in the Drosophila vesicular monoamine transporter (dVMAT) as a sensitized genetic background and performed a suppressor screen. We fed dVMAT mutant larvae ∼ 1000 known drugs and quantitated rescue (suppression) of an amine-dependent locomotor deficit in the larva. To determine which drugs might specifically potentiate neurotransmitter release, we performed an additional secondary screen for drugs that require presynaptic amine storage to rescue larval locomotion. Using additional larval locomotion and adult fertility assays, we validated that at least one compound previously used clinically as an antineoplastic agent potentiates the presynaptic function of aminergic circuits. We suggest that structurally similar agents might be used to development treatments for PD, depression and ADHD, and that modifier screens in Drosophila provide a new strategy to screen for neuropsychiatric drugs. More generally, our findings demonstrate the power of physiologically based screens for identifying bioactive agents for select neurotransmitter systems

    Decoupling of a Neutron Interferometer from Temperature Gradients

    Get PDF
    Neutron interferometry enables precision measurements that are typically operated within elaborate, multi-layered facilities which provide substantial shielding from environmental noise. These facilities are necessary to maintain the coherence requirements in a perfect crystal neutron interferometer which is extremely sensitive to local environmental conditions such as temperature gradients across the interferometer, external vibrations, and acoustic waves. The ease of operation and breadth of applications of perfect crystal neutron interferometry would greatly benefit from a mode of operation which relaxes these stringent isolation requirements. Here, the INDEX Collaboration and National Institute of Standards and Technology demonstrates the functionality of a neutron interferometer in vacuum and characterize the use of a compact vacuum chamber enclosure as a means to isolate the interferometer from spatial temperature gradients and time-dependent temperature fluctuations. The vacuum chamber is found to have no depreciable effect on the performance of the interferometer (contrast) while improving system stability, thereby showing that it is feasible to replace large temperature isolation and control systems with a compact vacuum enclosure for perfect crystal neutron interferometry

    Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4

    Get PDF
    The present work reported the adsorption of Cr (VI) from aqueous solutions on activated carbon prepared from mango kernel, a seasonal waste from mango fruits. Kernels from dried mango fruit shells were taken out and pulverized in a micro-pulverizing mill. The powder thus obtained was activated with 40% H3PO4 and carbonized at 600 °C for 1 hour in an inert atmosphere. Physico-chemical characteristics such as elemental composition, surface area, functional groups and surface morphology of the activated carbon were analyzed using elemental analyzer, BET surface area analyzer, FTIR spectroscopy and SEM analysis respectively. Batch adsorption experiments were performed to investigate the effects of Cr (VI) concentration, carbon dose, pH, rate of agitation, time and temperature. The maximum adsorption capacity of Cr(VI) was found to be 7.8 mg g−1 at pH 2 and temperature 35 °C. The Langmuir adsorption isotherm best represented the equilibrium data and a pseudo-second order relation represented the adsorption kinetics

    Neutron interferometric measurement of the scattering length difference between the triplet and singlet states of n-3^3He

    Full text link
    We report a determination of the n-3^3He scattering length difference Δb=b1b0=\Delta b^{\prime} = b_{1}^{\prime}-b_{0}^{\prime} = (5.411-5.411 ±\pm 0.0310.031 (statistical) ±\pm 0.0390.039 (systematic)) fm between the triplet and singlet states using a neutron interferometer. This revises our previous result Δb=\Delta b^{\prime} = (-5.610 ±\pm 0.0270.027 (statistical) ±\pm 0.0320.032 (systematic) fm obtained using the same technique in 2008. This revision is due to a re-analysis of the 2008 experiment that includes a more robust treatment of the phase shift caused by magnetic field gradients near the 3^3He cell. Furthermore, we more than doubled our original data set from 2008 by acquiring six months of additional data in 2013. Both the new data set and a re-analysis of the older data are in good agreement. Scattering lengths of low Z isotopes are valued for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models and in the case of 3^3He aid in the interpretation of neutron scattering from quantum liquids. The difference Δb\Delta b^{\prime} was determined by measuring the relative phase shift between two incident neutron polarizations caused by the spin-dependent interaction with a polarized 3^3He target. The target 3^3He gas was sealed inside a small, flat windowed glass cell that was placed in one beam path of the interferometer. The relaxation of 3^3He polarization was monitored continuously with neutron transmission measurements. The neutron polarization and spin flipper efficiency were determined separately using 3^3He analyzers and two different polarimetry analysis methods. A summary of the measured scattering lengths for n-3^3He with a comparison to nucleon interaction models is given

    What are the main inefficiencies in trial conduct : a survey of UKCRC registered clinical trials units in the UK

    Get PDF
    BACKGROUND: The UK Clinical Research Collaboration (UKCRC) registered Clinical Trials Units (CTUs) Network aims to support high-quality, efficient and sustainable clinical trials research in the UK. To better understand the challenges in efficient trial conduct, and to help prioritise tackling these challenges, we surveyed CTU staff. The aim was to identify important inefficiencies during two key stages of the trial conduct life cycle: (i) from grant award to first participant, (ii) from first participant to reporting of final results. METHODS: Respondents were asked to list their top three inefficiencies from grant award to recruitment of the first participant, and from recruitment of the first participant to publication of results. Free text space allowed respondents to explain why they thought these were important. The survey was constructed using SurveyMonkey and circulated to the 45 registered CTUs in May 2013. Respondents were asked to name their unit and job title, but were otherwise anonymous. Free-text responses were coded into broad categories. RESULTS: There were 43 respondents from 25 CTUs. The top inefficiency between grant award and recruitment of first participant was reported as obtaining research and development (R&D) approvals by 23 respondents (53%), contracts by 22 (51%), and other approvals by 13 (30%). The top inefficiency from recruitment of first participant to publication of results was failure to meet recruitment targets, reported by 19 (44%) respondents. A common comment was that this reflected overoptimistic or inaccurate estimates of recruitment at site. Data management, including case report form design and delays in resolving data queries with sites, was reported as an important inefficiency by 11 (26%) respondents, and preparation and submission for publication by 9 (21%). CONCLUSIONS: Recommendations for improving the efficiency of trial conduct within the CTUs network include: further reducing unnecessary bureaucracy in approvals and contracting; improving training for site staff; realistic recruitment targets and appropriate feasibility; developing training across the network; improving the working relationships between chief investigators and units; encouraging funders to release sufficient funding to allow prompt recruitment of trial staff; and encouraging more research into how to improve the efficiency and quality of trial conduct

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic
    corecore