research

Neutron interferometric measurement of the scattering length difference between the triplet and singlet states of n-3^3He

Abstract

We report a determination of the n-3^3He scattering length difference Δb=b1b0=\Delta b^{\prime} = b_{1}^{\prime}-b_{0}^{\prime} = (5.411-5.411 ±\pm 0.0310.031 (statistical) ±\pm 0.0390.039 (systematic)) fm between the triplet and singlet states using a neutron interferometer. This revises our previous result Δb=\Delta b^{\prime} = (-5.610 ±\pm 0.0270.027 (statistical) ±\pm 0.0320.032 (systematic) fm obtained using the same technique in 2008. This revision is due to a re-analysis of the 2008 experiment that includes a more robust treatment of the phase shift caused by magnetic field gradients near the 3^3He cell. Furthermore, we more than doubled our original data set from 2008 by acquiring six months of additional data in 2013. Both the new data set and a re-analysis of the older data are in good agreement. Scattering lengths of low Z isotopes are valued for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models and in the case of 3^3He aid in the interpretation of neutron scattering from quantum liquids. The difference Δb\Delta b^{\prime} was determined by measuring the relative phase shift between two incident neutron polarizations caused by the spin-dependent interaction with a polarized 3^3He target. The target 3^3He gas was sealed inside a small, flat windowed glass cell that was placed in one beam path of the interferometer. The relaxation of 3^3He polarization was monitored continuously with neutron transmission measurements. The neutron polarization and spin flipper efficiency were determined separately using 3^3He analyzers and two different polarimetry analysis methods. A summary of the measured scattering lengths for n-3^3He with a comparison to nucleon interaction models is given

    Similar works

    Full text

    thumbnail-image

    Available Versions