70 research outputs found

    Estimation of genetic parameters for feed efficiency traits using random regression models in dairy cattle.

    Get PDF
    Feed efficiency has become an increasingly important research topic in recent years. As feed costs rise and the environmental impacts of agriculture become more apparent, improving the efficiency with which dairy cows convert feed to milk is increasingly important. However, feed intake is expensive to measure accurately on large populations, making the inclusion of this trait in breeding programs difficult. Understanding how the genetic parameters of feed efficiency and traits related to feed efficiency vary throughout the lactation period is valuable to gain understanding into the genetic nature of feed efficiency. This study used 121,226 dry matter intake (DMI) records, 120,500 energy corrected milk (ECM) records, and 98,975 metabolic body weight (MBW) records, collected on 7,440 first lactation Holstein cows from 6 countries (Canada, Denmark, Germany, Spain, Switzerland, and United States of America), from January 2003 to February 2022. Genetic parameters were estimated using a multiple-trait random regression model with a fourth order Legendre polynomial for all traits. Weekly phenotypes for DMI were re-parameterized using linear regressions of DMI on ECM and MBW, creating a measure of feed efficiency that was genetically corrected for ECM and MBW, referred to as genomic residual feed intake (gRFI). Heritability (SE) estimates varied from 0.15 (0.03) to 0.29 (0.02) for DMI, 0.24 (0.01) to 0.29 (0.03) for ECM, 0.55 (0.03) to 0.83 (0.05) for MBW, and 0.12 (0.03) to 0.22 (0.06) for gRFI. In general, heritability estimates were lower in the first stage of lactation compared with the later stages of lactation. Additive genetic correlations between weeks of lactation varied, with stronger correlations between weeks of lactation that were close together. The results of this study contribute to a better understanding of the change in genetic parameters across the first lactation, providing insight into potential selection strategies to include feed efficiency in breeding programs

    Genome-wide pleiotropy and shared biological pathways for resistance to bovine pathogens

    Get PDF
    <div><p>Host genetic architecture is a major factor in resistance to pathogens and parasites. The collection and analysis of sufficient data on both disease resistance and host genetics has, however, been a major obstacle to dissection the genetics of resistance to single or multiple pathogens. A severe challenge in the estimation of heritabilities and genetic correlations from pedigree-based studies has been the confounding effects of the common environment shared among relatives which are difficult to model in pedigree analyses, especially for health traits with low incidence rates. To circumvent this problem we used genome-wide single-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resistance to 23 different infectious pathogens in calves and cows in populations undergoing natural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized gene-set analysis to understand the biological background of resistance to infectious diseases. The results showed relatively higher heritabilities of resistance in calves than in cows and significant pleiotropy (both positive and negative) among some calf and cow resistance traits. We also found significant pleiotropy between resistance and performance in both calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the most important biological pathways associated with resistance to all pathogens. These results both illustrate the potential power of these approaches to illuminate the genetics of pathogen resistance in cattle and provide foundational information for future genomic selection aimed at improving the overall production fitness of cattle.</p></div

    The Resilient Dairy Genome Project - a general overview of methods and objectives related to feed efficiency and methane emissions.

    Get PDF
    The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries, i.e., Australia [AUS], Canada [CAN], Denmark [DNK], Germany [DEU], Spain [ESP], Switzerland [CHE], and United States of America [USA] contribute with genotypes and phenotypes including DMI and CH4. However, combining data is challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis

    Isolation, Characterization, and Stability of Discretely-Sized Nanolipoprotein Particles Assembled with Apolipophorin-III

    Get PDF
    Background: Nanolipoprotein particles (NLPs) are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III) was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. Methodology: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to.25 nm) and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4uC was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. Conclusions: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utilit

    Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes : implications for classification of enzyme function

    Get PDF
    The authors thank the National Institutes of Health (NIH R01 GM60595 to PCB) and the Scottish Universities Life Sciences Alliance (SULSA to JBOM) for funding.Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.Peer reviewe
    corecore