1,959 research outputs found
Free electron lasers for transmission of energy in space
A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit
Compensation in epitaxial cubic SiC films
Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D(O) - alpha N sub N sup 1/3 for cubic SiC. A curve fit gives alpha is approx 2.6x10/5 meV cm and E sub D (O) approx 48 meV, which is the generally accepted value of E sub D(O) for nitrogen donors in cubic SiC
Coherent Control for a Two-level System Coupled to Phonons
The interband polarizations induced by two phase-locked pulses in a
semiconductor show strong interference effects depending on the time tau_1
separating the pulses. The four-wave mixing signal diffracted from a third
pulse delayed by tau is coherently controlled by tuning tau_1. The four-wave
mixing response is evaluated exactly for a two-level system coupled to a single
LO phonon. In the weak coupling regime it shows oscillations with the phonon
frequency which turn into sharp peaks at multiples of the phonon period for a
larger coupling strength. Destructive interferences between the two
phase-locked pulses produce a splitting of the phonon peaks into a doublet. For
fixed tau but varying tau_1 the signal shows rapid oscillations at the
interband-transition frequency, whose amplitude exhibits bursts at multiples of
the phonon period.Comment: 4 pages, 4 figures, RevTex, content change
Diffraction in low-energy electron scattering from DNA: bridging gas phase and solid state theory
Using high-quality gas phase electron scattering calculations and multiple
scattering theory, we attempt to gain insights on the radiation damage to DNA
induced by secondary low-energy electrons in the condensed phase, and to bridge
the existing gap with the gas phase theory and experiments. The origin of
different resonant features (arising from single molecules or diffraction) is
discussed and the calculations are compared to existing experiments in thin
films.Comment: 40 pages preprint, 12 figures, submitted to J. Chem. Phy
Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state
Although not an intrinsic superconductor, it has been long--known that, when
intercalated with certain dopants, graphite is capable of exhibiting
superconductivity. Of the family of graphite--based materials which are known
to superconduct, perhaps the most well--studied are the alkali metal--graphite
intercalation compounds (GIC) and, of these, the most easily fabricated is the
CK system which exhibits a transition temperature K. By increasing the alkali metal concentration (through high pressure
fabrication techniques), the transition temperature has been shown to increase
to as much as K in CNa. Lately, in an important recent
development, Weller \emph{et al.} have shown that, at ambient conditions, the
intercalated compounds \cyb and \cca exhibit superconductivity with transition
temperatures K and K respectively, in excess
of that presently reported for other graphite--based compounds. We explore the
architecture of the states near the Fermi level and identify characteristics of
the electronic band structure generic to GICs. As expected, we find that charge
transfer from the intercalant atoms to the graphene sheets results in the
occupation of the --bands. Yet, remarkably, in all those -- and only
those -- compounds that superconduct, we find that an interlayer state, which
is well separated from the carbon sheets, also becomes occupied. We show that
the energy of the interlayer band is controlled by a combination of its
occupancy and the separation between the carbon layers.Comment: 4 Figures. Please see accompanying experimental manuscript
"Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca" by
Weller et a
Optimal transport on wireless networks
We present a study of the application of a variant of a recently introduced
heuristic algorithm for the optimization of transport routes on complex
networks to the problem of finding the optimal routes of communication between
nodes on wireless networks. Our algorithm iteratively balances network traffic
by minimizing the maximum node betweenness on the network. The variant we
consider specifically accounts for the broadcast restrictions imposed by
wireless communication by using a different betweenness measure. We compare the
performance of our algorithm to two other known algorithms and find that our
algorithm achieves the highest transport capacity both for minimum node degree
geometric networks, which are directed geometric networks that model wireless
communication networks, and for configuration model networks that are
uncorrelated scale-free networks.Comment: 5 pages, 4 figure
The experience of long-term opiate maintenance treatment and reported barriers to recovery: A qualitative systematic review
Background/Aim: To inform understanding of the experience of long-term opiate maintenance and identify barriers to recovery. Methods: A qualitative systematic review. Results: 14 studies in 17 papers, mainly from the USA (65%), met inclusion criteria, involving 1,088 participants. Studies focused on methadone prescribing. Participants reported stability; however, many disliked methadone. Barriers to full recovery were primarily ‘inward focused'. Conclusion: This is the first review of qualitative literature on long-term maintenance, finding that universal service improvements could be made to address reported barriers to recovery, including involving ex-users as positive role models, and increasing access to psychological support. Treatment policies combining harm minimisation and abstinence-orientated approaches may best support individualised recovery
Spin-dependent resonant tunneling through semimetallic ErAs quantum wells
Resonant tunneling through semimetallic ErAs quantum wells embedded in GaAs
structures with AlAs barriers was recently found to exhibit an intriguing
behavior in magnetic fields which is explained in terms of tunneling selection
rules and the spin-polarized band structure including spin-orbit coupling.Comment: 4 pages, figures supplied as self-unpacking figures.uu, uses
epsfig.sty to incorporate figures in preprin
- …
