506 research outputs found
Microbiology in nuclear waste disposal: interfaces and reaction fronts
It is now generally acknowledged that microbial populations will be present within nuclear waste repositories and that the consequences of such activity on repository performance must be assessed. Various modelling approaches - based either on mass balance/thermodynamics or on kinetics - have been developed to provide scoping estimates of the possible development of these populations. Past work has focused on particular areas of the repository which can be considered relatively homogeneous and hence can be represented by some kind of ‘box' or ‘mixing tank'. In reality, however, waste repositories include a range of engineering materials (steel, concrete, etc.) which are emplaced at depth in a rock formation. Strong chemical gradients - of the type which may be exploited by lithoautotrophic microbial populations - are likely to be found at the contacts between different materials and at the interface between the engineered structures and the host rock. Over the long timescales considered, solute transport processes will cause the locations of strong chemical gradients to move, forming reaction fronts. The high-pH plume resulting from the leaching of cement/concrete in some repository types is a particularly important example of such a reaction front. Redox fronts, which may occur in different areas of all kinds of repositories, also play an important role and would be locations where microbial activity is likely to be significant. In this paper, the key microbial processes expected at (or around) interfaces and fronts will be discussed, with particular emphasis on the development of quantitative models. The applicability of the models used will be tested by considering similar fronts which can be found in natural system
NEA TDBIV project : preparation of a state-of-the-art report on thermodynamic data for cement
The program of work of the fourth phase of the OECD NEA Thermochemical Database Project (TDB-IV) contemplates a line of activity on the preparation of a state of the art report on cements. The present work aims at presenting the project, its aims and its limits
Potential tumour doubling time: determination of Tpot for various canine and feline tumours
Spontaneous tumours in dogs and cats are an excellent model for clinical human research, such as in developing proton conformation radiotherapy for humans. The kinetics of tumour cells can be used effectively to predict prognosis and response to therapy in patients with tumours. Knowledge of the kinetic parameters in these tumours is therefore important. In the present study the kinetic parameters evaluated included the labelling index (LI), relative movement (RM), mitotic index (MI), and potential doubling time (Tpot). These parameters were determined using in vivo labelling with bromodeoxyuridine, flow cytometry and histological preparation. Samples were obtained and evaluated from 72 dogs and 20 cats, presenting as patients in our clinic. Within the groups of epithelial and mesenchymal tumours from dogs and cats, the kinetic parameters LI, RM and MI were compared with Tpot. Significant correlations were observed for the comparison Tpot and LI. No correlation was found between Tpot and R
Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775
Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.
Siderophore production by Bacillus megaterium : effect of growth-phase and cultural conditions
Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g−1 dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g−1 dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546–842 μmol g−1 dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.The authors thank Porto University/Totta Bank for their financial support through the project "Microbiological production of chelating agents" (Ref: 180). The authors also thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grants Strategic project-LA23/2013-2014 (IBB) and PEST-C/EQB/LA0006/2011 (REQUIMTE). Manuela D. Machado gratefully acknowledges the postdoctoral (SFRH/BPD/72816/2010) grant from FCT
Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from Serratia sp. v4
Studying the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores - soluble, low molecular weight compounds - have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition for acquiring iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of 'odd' siderophores can reveal the evolutionary strategy that led to their creation. Here, we here report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholerae vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.This work was supported by the National Institutes of Health (Grants GM82137 to R.K., and AI057159 and GM086258 to J.C.). M.R.S. acknowledges support from the NIH Pathway to Independence Award (Grant 1K99 GM098299-01). S.C. and M.J.V. acknowledge support from the Portuguese Foundation for Science and Technology (PhD Grant SFRH/BD/38298/2007 to S.C.; Project PTDC/EBB-EBI/104263/2008 to M.J.V.)
Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection
Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient's death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.This work was supported by FEDER and FCT – Fundação para a Ciência e a Tecnologia (contract PEst-OE/EQB/LA0023/2011_ research line: Systems and Synthetic Biology; PhD grant to A.M. – SFRH/BD/37012/2007, and PD grants to S.S. – SFRH/BPD/75483/2010 and C.C. – SFRH/BPD/ 81220/2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen
Staphyloferrin B (SB) is a citrate-based polycarboxylate siderophore produced and utilized by the human pathogen Staphylococcus aureus for acquiring iron when colonizing the vertebrate host. The first chemical synthesis of SB is reported, which enables further molecular and biological characterization and provides access to structural analogues of the siderophore. Under conditions of iron limitation, addition of synthetic SB to bacterial growth medium recovered the growth of the antibiotic resistant community isolate S. aureus USA300 JE2. Two structural analogues of SB, epiSB and SBimide, were also synthesized and employed to investigate how epimerization of the citric acid moiety or imide formation influence its function as a siderophore. Epimerization of the citric acid stereocenter perturbed the iron-binding properties and siderophore function of SB as evidenced by experimental and computational modeling studies. Although epiSB provided growth recovery to S. aureus USA300 JE2 cultured in iron-deficient medium, the effect was attenuated relative to that of SB. Moreover, SB more effectively sequestered the Fe(III) bound to human holo-transferrin, an iron source of S. aureus, than epiSB. SBimide is an imide analogous to the imide forms of other citric acid siderophores that are often observed when these molecules are isolated from natural sources. Here, SBimide is shown to be unstable, converting to native SB at physiological pH. SB is considered to be a virulence factor of S. aureus, a pathogen that poses a particular threat to public health because of the number of drug-resistant strains emerging in hospital and community settings. Iron acquisition by S. aureus is important for its ability to colonize the human host and cause disease, and new chemical insights into the structure and function of SB will inform the search for new therapeutic strategies for combating S. aureus infections.Alfred Benzon Foundation (Postdoctoral fellowship)Pacific Southwest Regional Center of ExcellenceAlfred P. Sloan Foundatio
Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum aestivum L.) crops
Abstract In the pursuit of sustainable agriculture, bioinoculants usage as providers of a crop's needs is a method to limit environmental damage. In this study, a collection of cultivable putative plant growth promoting (PGP) bacteria associated with wheat crops was obtained and this bacterial sample was characterized in relation to the functional diversity of certain PGP features. The isolates were obtained through classical cultivation methods, identified by partial 16S rRNA gene sequencing and characterized for PGP traits of interest. Functional diversity characterization was performed using Categorical Principal Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most abundant genera found among the 346 isolates were Pseudomonas, Burkholderia, and Enterobacter. Occurrence of PGP traits was affected by genus, niche, and sampling site. A large number of genera grouped together with the ability to produce indolic compounds; phosphate solubilization and siderophores production formed a second group related to fewer genera, in which the genus Burkholderia has a great importance. The results obtained may help future studies aiming prospection of putative plant growth promoting bacteria regarding the desired organism and PGP trait
Characterization of Contaminants from a Sanitized Milk Processing Plant
Milk processing lines offer a wide variety of microenvironments where a diversity of microorganisms can proliferate. We sampled crevices and junctions where, due to deficient reach by typical sanitizing procedures, bacteria can survive and establish biofilms. The sampling sites were the holding cell, cold storage tank, pasteurizer and storage tank - transfer pump junction. The culturable bacteria that were isolated after the sanitation procedure were predominantly Pseudomonas spp., Serratia spp, Staphylococcus sciuri and Stenotrophomonas maltophilia. We assayed several phenotypic characteristics such as the ability to secrete enzymes and siderophores, as well as the capacity of the strains to form biofilms that might contribute to their survival in a mixed species environment. The Pseudomonas spp. isolates were found to either produce proteases or lecithinases at high levels. Interestingly, protease production showed an inverse correlation with siderophore production. Furthermore, all of the Serratia spp. isolates were strong biofilm formers and spoilage enzymes producers. The organisms identified were not mere contaminants, but also producers of proteins with the potential to lower the quality and shelf-life of milk. In addition, we found that a considerable number of the Serratia and Pseudomonas spp. isolated from the pasteurizer were capable of secreting compounds with antimicrobial properties
- …
