387 research outputs found

    Auto-Classifier: A Robust Defect Detector Based on an AutoML Head

    Full text link
    The dominant approach for surface defect detection is the use of hand-crafted feature-based methods. However, this falls short when conditions vary that affect extracted images. So, in this paper, we sought to determine how well several state-of-the-art Convolutional Neural Networks perform in the task of surface defect detection. Moreover, we propose two methods: CNN-Fusion, that fuses the prediction of all the networks into a final one, and Auto-Classifier, which is a novel proposal that improves a Convolutional Neural Network by modifying its classification component using AutoML. We carried out experiments to evaluate the proposed methods in the task of surface defect detection using different datasets from DAGM2007. We show that the use of Convolutional Neural Networks achieves better results than traditional methods, and also, that Auto-Classifier out-performs all other methods, by achieving 100% accuracy and 100% AUC results throughout all the datasets.Comment: 12 pages, 2 figures. Published in ICONIP2020, proceedings published in the Springer's series of Lecture Notes in Computer Scienc

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X
    corecore