4,123 research outputs found
An Evaluation of Physical Disk I/Os for Complex Object Processing
In order to obtain the performance required for nonstandard database environments, a hierarchical complex object model with object references is used as a storage structure for complex objects. Several storage models for these complex objects, as well as a benchmark to evaluate their performance, are described. A cost model for analytical performance evaluation is developed, and the analytical results are validated by means of measurements on the DASDBS, complex object storage system. The results show which storage structures for complex objects are the most efficient under which circumstance
Concorde Noise-Induced Building Vibrations, Montgomery County, Maryland
A series of studies are reported to assess the noise induced building vibrations associated with Concorde operations. The levels of induced vibration and associated indoor/outdoor noise levels resulting from aircraft and nonaircraft events in selected homes, historic and other buildings near Dulles International Airport were recorded. The building response resulting from aircraft operations was found to be directly proportional to the overall sound pressure level and approximately independent of the aircraft type. The noise levels and, consequently, the response levels were observed to be higher for the Concorde operations than for the CTOL operations. Furthermore, the vibration could be closely reproduced by playing aircraft noise through a loudspeaker system located near the vibration measurement location. Nonaircraft events such as door closing were again observed to result in higher response levels than those induced by aircraft
Quiet Sun Magnetic Field Measurements Based on Lines with Hyperfine Structure
The Zeeman pattern of MnI lines is sensitive to hyperfine structure (HFS)
and, they respond to hG magnetic field strengths differently from the lines
used in solar magnetometry. This peculiarity has been employed to measure
magnetic field strengths in quiet Sun regions. However, the methods applied so
far assume the magnetic field to be constant in the resolution element. The
assumption is clearly insufficient to describe the complex quiet Sun magnetic
fields, biasing the results of the measurements. We present the first syntheses
of MnI lines in realistic quiet Sun model atmospheres. The syntheses show how
the MnI lines weaken with increasing field strength. In particular, kG magnetic
concentrations produce NnI 5538 circular polarization signals (Stokes V) which
can be up to two orders of magnitude smaller than the weak magnetic field
approximation prediction. Consequently, (1) the polarization emerging from an
atmosphere having weak and strong fields is biased towards the weak fields, and
(2) HFS features characteristic of weak fields show up even when the magnetic
flux and energy are dominated by kG fields. For the HFS feature of MnI 5538 to
disappear the filling factor of kG fields has to be larger than the filling
factor of sub-kG fields. Stokes V depends on magnetic field inclination
according to the simple consine law. Atmospheres with unresolved velocities
produce asymmetric line profiles, which cannot be reproduced by simple
one-component model atmospheres. The uncertainty of the HFS constants do not
limit the use of MnI lines for magnetometry.Comment: Accepted for publication in ApJ. 10 pages, 14 figure
Echinococcus metacestodes as laboratory models for the screening of drugs against cestodes and trematodes
Among the cestodes, Echinococcus granulosus, Echinococcus multilocularis and Taenia solium represent the most dangerous parasites. Their larval stages cause the diseases cystic echinococcosis (CE), alveolar echincoccosis (AE) and cysticercosis, respectively, which exhibit considerable medical and veterinary health concerns with a profound economic impact. Others caused by other cestodes, such as species of the genera Mesocestoides and Hymenolepis, are relatively rare in humans. In this review, we will focus on E. granulosus and E. multilocularis metacestode laboratory models and will review the use of these models in the search for novel drugs that could be employed for chemotherapeutic treatment of echinococcosis. Clearly, improved therapeutic drugs are needed for the treatment of AE and CE, and this can only be achieved through the development of medium-to-high throughput screening approaches. The most recent achievements in the in vitro culture and genetic manipulation of E. multilocularis cells and metacestodes, and the accessability of the E. multilocularis genome and EST sequence information, have rendered the E. multilocularis model uniquely suited for studies on drug-efficacy and drug target identification. This could lead to the development of novel compounds for the use in chemotherapy against echinococcosis, and possibly against diseases caused by other cestodes, and potentially also trematode
Recommended from our members
Detailed Visual Cortical Responses Generated by Retinal Sheet Transplants in Rats with Severe Retinal Degeneration.
To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration
Sub-nanosecond signal propagation in anisotropy engineered nanomagnetic logic chains
Energy efficient nanomagnetic logic (NML) computing architectures propagate
and process binary information by relying on dipolar field coupling to reorient
closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of
various sizes, shapes, and magnetic orientations has been previously
characterized by static magnetic imaging experiments with low-speed adiabatic
operation; however the mechanisms which determine the final state and their
reproducibility over millions of cycles in high-speed operation (sub-ns time
scale) have yet to be experimentally investigated. Monitoring NML operation at
its ultimate intrinsic speed reveals features undetectable by conventional
static imaging including individual nanomagnetic switching events and
systematic error nucleation during signal propagation. Here, we present a new
study of NML operation in a high speed regime at fast repetition rates. We
perform direct imaging of digital signal propagation in permalloy nanomagnet
chains with varying degrees of shape-engineered biaxial anisotropy using
full-field magnetic soft x-ray transmission microscopy after applying single
nanosecond magnetic field pulses. Further, we use time-resolved magnetic
photo-emission electron microscopy to evaluate the sub-nanosecond dipolar
coupling signal propagation dynamics in optimized chains with 100 ps time
resolution as they are cycled with nanosecond field pulses at a rate of 3 MHz.
An intrinsic switching time of 100 ps per magnet is observed. These
experiments, and accompanying macro-spin and micromagnetic simulations, reveal
the underlying physics of NML architectures repetitively operated on nanosecond
timescales and identify relevant engineering parameters to optimize performance
and reliability.Comment: Main article (22 pages, 4 figures), Supplementary info (11 pages, 5
sections
Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation
Electronic structure of bismuth telluride nanowires with the growth
directions [110] and [015] is studied in the framework of anisotropic effective
mass method using the parabolic band approximation. The components of the
electron and hole effective mass tensor for six valleys are calculated for both
growth directions. For a square nanowire, in the temperature range from 77 K to
500 K, the dependence of the Seebeck coefficient, the electron thermal and
electrical conductivity as well as the figure of merit ZT on the nanowire
thickness and on the excess hole concentration are investigated in the
constant-relaxation-time approximation. The carrier confinement is shown to
play essential role for square nanowires with thickness less than 30 nm. The
confinement decreases both the carrier concentration and the thermal
conductivity but increases the maximum value of Seebeck coefficient in contrast
to the excess holes (impurities). The confinement effect is stronger for the
direction [015] than for the direction [110] due to the carrier mass difference
for these directions. The carrier confinement increases maximum value of ZT and
shifts it towards high temperatures. For the p-type bismuth telluride nanowires
with growth direction [110], the maximum value of the figure of merit is equal
to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and
the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the
figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for
sections 2-
- …
