85 research outputs found
Effects of the low frequencies of noise on On-Off intermittency
A bifurcating system subject to multiplicative noise can exhibit on-off
intermittency close to the instability threshold. For a canonical system, we
discuss the dependence of this intermittency on the Power Spectrum Density
(PSD) of the noise. Our study is based on the calculation of the Probability
Density Function (PDF) of the unstable variable. We derive analytical results
for some particular types of noises and interpret them in the framework of
on-off intermittency. Besides, we perform a cumulant expansion for a random
noise with arbitrary power spectrum density and show that the intermittent
regime is controlled by the ratio between the departure from the threshold and
the value of the PSD of the noise at zero frequency. Our results are in
agreement with numerical simulations performed with two types of random
perturbations: colored Gaussian noise and deterministic fluctuations of a
chaotic variable. Extensions of this study to another, more complex, system are
presented and the underlying mechanisms are discussed.Comment: 13pages, 13 figure
Longitudinal cohort study of horse owners
This report summarises the findings of a three-year mixed methods research study designed to capture factors that influence horse owner Hendra virus (HeV) risk mitigation practices.
The research project focuses on horse owners; their knowledge, attitudes, and risk mitigation practices, i.e. uptake of vaccination, property management, and biosecurity practices. A flexible research methodology enabled the tracking of core subject areas over time whilst also responding to new or evolving shifts in the HeV landscape, e.g. new HeV cases, event management, and issues arising in the vaccine roll-out.
By tracking relationships within the data and engaging with stakeholders and the horse owner population, it is hoped that findings from the study will help to identify important linkages and effective strategies for communication/information and policy implementation
Longitudinal cohort study of horse owners
This report summarises the findings of a three-year mixed methods research study designed to capture factors that influence horse owner Hendra virus (HeV) risk mitigation practices.
The research project focuses on horse owners; their knowledge, attitudes, and risk mitigation practices, i.e. uptake of vaccination, property management, and biosecurity practices. A flexible research methodology enabled the tracking of core subject areas over time whilst also responding to new or evolving shifts in the HeV landscape, e.g. new HeV cases, event management, and issues arising in the vaccine roll-out.
By tracking relationships within the data and engaging with stakeholders and the horse owner population, it is hoped that findings from the study will help to identify important linkages and effective strategies for communication/information and policy implementation
Measurement of Lagrangian velocity in fully developed turbulence
We have developed a new experimental technique to measure the Lagrangian
velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler
tracking. This method yields a direct access to the velocity of a single
particule at a turbulent Reynolds number . Its dynamics is
analyzed with two decades of time resolution, below the Lagrangian correlation
time. We observe that the Lagrangian velocity spectrum has a Lorentzian form
, in agreement
with a Kolmogorov-like scaling in the inertial range. The probability density
function (PDF) of the velocity time increments displays a change of shape from
quasi-Gaussian a integral time scale to stretched exponential tails at the
smallest time increments. This intermittency, when measured from relative
scaling exponents of structure functions, is more pronounced than in the
Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR
The Richardson's Law in Large-Eddy Simulations of Boundary Layer flows
Relative dispersion in a neutrally stratified planetary boundary layer (PBL)
is investigated by means of Large-Eddy Simulations (LES). Despite the small
extension of the inertial range of scales in the simulated PBL, our Lagrangian
statistics turns out to be compatible with the Richardson law for the
average of square particle separation. This emerges from the application of
nonstandard methods of analysis through which a precise measure of the
Richardson constant was also possible. Its values is estimated as
in close agreement with recent experiments and three-dimensional direct
numerical simulations.Comment: 15 LaTex pages, 4 PS figure
Transport properties of heavy particles in high Reynolds number turbulence
The statistical properties of heavy particle trajectories in high Reynolds
numbers turbulent flows are analyzed. Dimensional analysis assuming Kolmogorov
scaling is compared with the result of numerical simulation using a synthetic
turbulence advecting field. The non-Markovian nature of the fluid velocity
statistics along the solid particle trajectories is put into evidence, and its
relevance in the derivation of Lagrangian transport models is discussed.Comment: 30 pages, 11 eps figures included. To appear in Physics of Fluid
Dynamics and statistics of heavy particles in turbulent flows
We present the results of Direct Numerical Simulations (DNS) of turbulent
flows seeded with millions of passive inertial particles. The maximum Taylor's
Reynolds number is around 200. We consider particles much heavier than the
carrier flow in the limit when the Stokes drag force dominates their dynamical
evolution. We discuss both the transient and the stationary regimes. In the
transient regime, we study the growt of inhomogeneities in the particle spatial
distribution driven by the preferential concentration out of intense vortex
filaments. In the stationary regime, we study the acceleration fluctuations as
a function of the Stokes number in the range [0.16:3.3]. We also compare our
results with those of pure fluid tracers (St=0) and we find a critical behavior
of inertia for small Stokes values. Starting from the pure monodisperse
statistics we also characterize polydisperse suspensions with a given mean
Stokes.Comment: 13 pages, 10 figures, 2 table
Path lengths in turbulence
By tracking tracer particles at high speeds and for long times, we study the
geometric statistics of Lagrangian trajectories in an intensely turbulent
laboratory flow. In particular, we consider the distinction between the
displacement of particles from their initial positions and the total distance
they travel. The difference of these two quantities shows power-law scaling in
the inertial range. By comparing them with simulations of a chaotic but
non-turbulent flow and a Lagrangian Stochastic model, we suggest that our
results are a signature of turbulence.Comment: accepted for publication in Journal of Statistical Physic
Generation of small-scale structures in the developed turbulence
The Navier-Stokes equation for incompressible liquid is considered in the
limit of infinitely large Reynolds number. It is assumed that the flow
instability leads to generation of steady-state large-scale pulsations. The
excitation and evolution of the small-scale turbulence is investigated. It is
shown that the developed small-scale pulsations are intermittent. The maximal
amplitude of the vorticity fluctuations is reached along the vortex filaments.
Basing on the obtained solution, the pair correlation function in the limit
is calculated. It is shown that the function obeys the Kolmogorov law
.Comment: 18 page
- âŠ