398 research outputs found

    Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts

    Full text link
    The NASA STEREO mission opened up the possibility to forecast the arrival times, speeds and directions of solar transients from outside the Sun-Earth line. In particular, we are interested in predicting potentially geo-effective Interplanetary Coronal Mass Ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (2012, ApJ, in press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g. the ecliptic), with constant angular half width (lambda). This is an extension to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage that it is possible to assess clearly, in contrast to previous models, if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100-200 km/s) and arrival times (up to two days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the geometric correction becomes very similar to the one derived by M\"ostl et al. (2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics

    Tracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth

    Get PDF
    We investigate a CME propagating towards Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shock front as detected by in situ measurements at L1. A time-series of mass measurements from the STEREO COR-2A instrument are made along the Earth propagation direction. Qualitatively, this mass time-series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a 3D magnetospheric space weather simulation from CCMC. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME and predictions are made for the time-derivative of the magnetic field (dB/dt) on the ground. The predicted dB/dt were then compared with observations from specific equatorially-located ground stations and show notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time-series as inputs to magnetospheric simulations.Comment: Accepted for publication 8th March 2013. Submitted 18th Dec 2012. 19 Pages, 10 figures, 2 Appendice

    LiftUpp: Support to Develop Learner Performance

    Get PDF
    Various motivations exist to move away from the simple assessment of knowledge towards the more complex assessment and development of competence. However, to accommodate such a change, high demands are put on the supporting e-infrastructure in terms of intelligently collecting and analysing data. In this paper, we discuss these challenges and how they are being addressed by LiftUpp, a system that is now used in 70% of UK dental schools, and is finding wider applications in physiotherapy, medicine and veterinary science. We describe how data is collected for workplace-based development in dentistry using a dedicated iPad app, which enables an integrated approach to linking and assessing work flows, skills and learning outcomes. Furthermore, we detail how the various forms of collected data can be fused, visualized and integrated with conventional forms of assessment. This enables curriculum integration, improved real-time student feedback, support for administration, and informed instructional planning. Together these facets contribute to better support for the development of learners' competence in situated learning setting, as well as an improved experience. Finally, we discuss several directions for future research on intelligent teaching systems that are afforded by using the design present within LiftUpp.Comment: Short 4-page version to appear at AIED 201

    The Automated Inspection of Opaque Liquid Vaccines

    Get PDF
    In the pharmaceutical industry the screening of opaque vaccines containing suspensions is currently a manual task carried out by trained human visual inspectors. We show that deep learning can be used to effectively automate this process. A moving contrast is required to distinguish anomalies from other particles, reflections and dust resting on a vial's surface. We train 3D-ConvNets to predict the likelihood of 20-frame video samples containing anomalies. Our unaugmented dataset consists of hand-labelled samples, recorded using vials provided by the HAL Allergy Group, a pharmaceutical company. We trained ten randomly initialized 3D-ConvNets to provide a benchmark, observing mean AUROC scores of 0.94 and 0.93 for positive samples (containing anomalies) and negative (anomaly-free) samples, respectively. Using Frame-Completion Generative Adversarial Networks we: (i) introduce an algorithm for computing saliency maps, which we use to verify that the 3D-ConvNets are indeed identifying anomalies; (ii) propose a novel self-training approach using the saliency maps to determine if multiple networks agree on the location of anomalies. Our self-training approach allows us to augment our data set by labelling 217,888 additional samples. 3D-ConvNets trained with our augmented dataset improve on the results we get when we train only on the unaugmented dataset.Comment: 8 pages, 5 Figures, 3 Tables, ECAI 2020 Conference Proceeding

    The angiogenic factor midkine is regulated by dexamethasone and retinoic acid during alveolarization and in alveolar epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A precise balance exists between the actions of endogenous glucocorticoids (GC) and retinoids to promote normal lung development, in particular during alveolarization. The mechanisms controlling this balance are largely unknown, but recent evidence suggests that midkine (MK), a retinoic acid-regulated, pro-angiogenic growth factor, may function as a critical regulator. The purpose of this study was to examine regulation of MK by GC and RA during postnatal alveolar formation in rats.</p> <p>Methods</p> <p>Newborn rats were treated with dexamethasone (DEX) and/or all-trans-retinoic acid (RA) during the first two weeks of life. Lung morphology was assessed by light microscopy and radial alveolar counts. MK mRNA and protein expression in response to different treatment were determined by Northern and Western blots. In addition, MK protein expression in cultured human alveolar type 2-like cells treated with DEX and RA was also determined.</p> <p>Results</p> <p>Lung histology confirmed that DEX treatment inhibited and RA treatment stimulated alveolar formation, whereas concurrent administration of RA with DEX prevented the DEX effects. During normal development, MK expression was maximal during the period of alveolarization from postnatal day 5 (PN5) to PN15. DEX treatment of rat pups decreased, and RA treatment increased lung MK expression, whereas concurrent DEX+RA treatment prevented the DEX-induced decrease in MK expression. Using human alveolar type 2 (AT2)-like cells differentiated in culture, we confirmed that DEX and cAMP decreased, and RA increased MK expression.</p> <p>Conclusion</p> <p>We conclude that MK is expressed by AT2 cells, and is differentially regulated by corticosteroid and retinoid treatment in a manner consistent with hormonal effects on alveolarization during postnatal lung development.</p
    • …
    corecore