112 research outputs found

    Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil.

    Get PDF
    The São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that orgThe São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that organic fertilization can improve soil quality, we compared the effects of conventional and organic soil management on microbial activity and mycorrhization of seedless grape crops. We measured glomerospores number, most probable number (MPN) of propagules, richness of arbuscular mycorrhizal fungi (AMF) species, AMF root colonization, EE-BRSP production, carbon microbial biomass (C-MB), microbial respiration, fluorescein diacetate hydrolytic activity (FDA) and metabolic coefficient (qCO2). The organic management led to an increase in all variables with the exception of EE-BRSP and qCO2. Mycorrhizal colonization increased from 4.7% in conventional crops to 15.9% in organic crops. Spore number ranged from 4.1 to 12.4 per 50 g-1 soil in both management systems. The most probable number of AMF propagules increased from 79 cm-3 soil in the conventional system to 110 cm-3 soil in the organic system. Microbial carbon, CO2 emission, and FDA activity were increased by 100 to 200% in the organic crop. Thirteen species of AMF were identified, the majority in the organic cultivation system. Acaulospora excavata, Entrophospora infrequens, Glomus sp.3 and Scutellospora sp. were found only in the organically managed crop. S. gregaria was found only in the conventional crop. Organically managed vineyards increased mycorrhization and general soil microbial activity

    Patterns of Plant Biomass Partitioning Depend on Nitrogen Source

    Get PDF
    Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. 15N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants

    Plastidial Starch Phosphorylase in Sweet Potato Roots Is Proteolytically Modified by Protein-Protein Interaction with the 20S Proteasome

    Get PDF
    Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions

    Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants

    Get PDF

    RELATIONSHIP BETWEEN INTRACELLULAR PH AND N-METABOLISM IN MAIZE (ZEA-MAYS L) ROOTS

    No full text
    In vivo31P nuclear magnetic resonance (NMR) was used to characterize the effect of the N form (NO3 vs. NH4) and the external pH (4, 6, and 8), on the intracellular pH of root tips (0-5 mm) and root segments (5-30 mm). Ammonium-grown root tips were the most sensitive to changes in the external pH. In vivo15N NMR was used to characterize the pathway of primary ammonium assimilation in the ammonium-grown roots and to compare the activity of the apical and more-basal root parts. The kinetics of 15NH4+ incorporation showed that primary assimilation in both root tips and root segments followed the glutamine synthetase (GS) pathway. In agreement with the reported gradient of GS along the seminal root of maize, incorporation of label into glutamine amide was more rapid in tips than in segments. It is suggested that this higher GS activity increases the endogenous proton production and thus contributes to the greater dependence of the cytoplasmic pH on the external pH in the ammonium-treated root tips. © 1993 Kluwer Academic Publishers

    THE INFLUENCE OF NITROGEN AND POTASSIUM SUPPLY ON THE AMMONIUM CONTENT OF MAIZE (ZEA-MAYS L) LEAVES INCLUDING A COMPARISON OF MEASUREMENTS MADE IN-VIVO AND IN-VITRO

    No full text
    Maize seedlings were grown on either nitrate or ammonium, at two different potassium levels, and the growth analysis revealed that ammonium supply reduced shoot dry matter particularly under conditions of limited potassium supply. The ammonium content of the leaves was determined in vitro, using continuous flow analysis of plant extracts, and in vivo using 14N nuclear magnetic resonance (NMR) spectroscopy. The conventional continuous flow analysis procedure was modified by the inclusion of a gas dialysis step across a PTFE membrane and control experiments showed that this provided an effective method for avoiding the overestimation of the ammonium content of leaf tissue extracts, by eliminating interference from amino acids and amides. Excellent agreement was obtained between the non-invasive NMR method and the modified continuous flow analysis technique, and it was concluded that leaf ammonium levels are unlikely to affect growth in plants grown with an adequate potassium supply. © 1995 Kluwer Academic Publishers
    corecore