4,612 research outputs found
Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments
We develop and analyze algorithms for dispersing a swarm of primitive robots
in an unknown environment, R. The primary objective is to minimize the
makespan, that is, the time to fill the entire region. An environment is
composed of pixels that form a connected subset of the integer grid.
There is at most one robot per pixel and robots move horizontally or
vertically at unit speed. Robots enter R by means of k>=1 door pixels
Robots are primitive finite automata, only having local communication, local
sensors, and a constant-sized memory.
We first give algorithms for the single-door case (i.e., k=1), analyzing the
algorithms both theoretically and experimentally. We prove that our algorithms
have optimal makespan 2A-1, where A is the area of R.
We next give an algorithm for the multi-door case (k>1), based on a
wall-following version of the leader-follower strategy. We prove that our
strategy is O(log(k+1))-competitive, and that this bound is tight for our
strategy and other related strategies.Comment: 17 pages, 4 figures, Latex, to appear in Workshop on Algorithmic
Foundations of Robotics, 200
The Development of a Comprehensive Mechanism for Intracellular Calcium Oscillations: A Theoretical Approach and an Experimental Validation
Calcium is an important second messenger for cellular communication. Theoretical models help scientists understand its signalling mechanism. A comprehensive model was developed in order to minimize any limitations in the models currently presented in the literature. Experimental results support the model and therefore the theoretical model provides a plausible explanation of the dynamics of the calcium-signaling mechanism. In the future, additional verification will be performed using various experimental configurations on PC12 cells. Further, the model will be used to predict the response of cells to environmental factors such as pesticides and heavy metals
A Comparison and Joint Analysis of Sunyaev-Zel'dovich Effect Measurements from Planck and Bolocam for a set of 47 Massive Galaxy Clusters
We measure the SZ signal toward a set of 47 clusters with a median mass of
M and a median redshift of 0.40 using data from
Planck and the ground-based Bolocam receiver. When Planck XMM-like masses are
used to set the scale radius , we find consistency between
the integrated SZ signal, , derived from Bolocam and Planck
based on gNFW model fits using A10 shape parameters, with an average ratio of
(allowing for the % Bolocam flux calibration
uncertainty). We also perform a joint fit to the Bolocam and Planck data using
a modified A10 model with the outer logarithmic slope allowed to vary,
finding (measurement error followed by
intrinsic scatter). In addition, we find that the value of scales with
mass and redshift according to . This mass scaling is in good agreement with recent
simulations. We do not observe the strong trend of with redshift seen
in simulations, though we conclude that this is most likely due to our sample
selection. Finally, we use Bolocam measurements of to test the
accuracy of the Planck completeness estimate. We find consistency, with the
actual number of Planck detections falling approximately below the
expectation from Bolocam. We translate this small difference into a constraint
on the the effective mass bias for the Planck cluster cosmology results, with
.Comment: Updated to include one additional co-author. Also some minor changes
to the text based on initial feedbac
Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity.
BackgroundMounting evidence points to individual contributions of tumour necrosis factor-alpha (TNF) and the c-Jun N-terminal kinase (JNK) pathway to the induction and maintenance of various pain states. Here we explore the role of spinal TNF and JNK in carrageenan-induced hypersensitivity. As links between TNF and JNK have been demonstrated in vitro, we investigated if TNF regulates spinal JNK activity in vivo.MethodsTNF levels in lumbar cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay, spinal TNF gene expression by real-time polymerase chain reaction and TNF protein expression, JNK and c-Jun phosphorylation by western blotting. The role of spinal TNF and JNK in inflammation-induced mechanical and thermal hypersensitivity was assessed by injecting the TNF inhibitor etanercept and the JNK inhibitors SP600125 and JIP-1 intrathecally (i.t.). TNF-mediated regulation of JNK activity was examined by assessing the effect of i.t. etanercept on inflammation-induced spinal JNK activity.ResultsTNF levels were increased in CSF and spinal cord following carrageenan-induced inflammation. While JNK phosphorylation followed the same temporal pattern as TNF, c-jun was only activated at later time points. Intrathecal injection of TNF and JNK inhibitors attenuated carrageenan-induced mechanical and thermal hypersensitivity. TNF stimulation induced JNK phosphorylation in cultured spinal astrocytes and blocking the spinal actions of TNF in vivo by i.t. injection of etanercept reduced inflammation-induced spinal JNK activity.ConclusionsHere we show that spinal JNK activity is dependent on TNF and that both TNF and the JNK signalling pathways modulate pain-like behaviour induced by peripheral inflammation
On the Reflexivity of Point Sets
We introduce a new measure for planar point sets S that captures a
combinatorial distance that S is from being a convex set: The reflexivity
rho(S) of S is given by the smallest number of reflex vertices in a simple
polygonalization of S. We prove various combinatorial bounds and provide
efficient algorithms to compute reflexivity, both exactly (in special cases)
and approximately (in general). Our study considers also some closely related
quantities, such as the convex cover number kappa_c(S) of a planar point set,
which is the smallest number of convex chains that cover S, and the convex
partition number kappa_p(S), which is given by the smallest number of convex
chains with pairwise-disjoint convex hulls that cover S. We have proved that it
is NP-complete to determine the convex cover or the convex partition number and
have given logarithmic-approximation algorithms for determining each.Comment: 28 pages, 16 figures, Latex, short version to appear in Discrete &
Computational Geometry -- The Goodman-Pollack Festschrift (2002),
Springer-Verla
Investigation of the Crust of the Pannonian Basin, Hungary Using Low-Altitude CHAMP Horizontal Gradient Magnetic Anomalies
The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin
Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project
The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center.
- …
