88 research outputs found

    Urinary Aminopeptidase Activities as Early and Predictive Biomarkers of Renal Dysfunction in Cisplatin-Treated Rats

    Get PDF
    This study analyzes the fluorimetric determination of alanyl- (Ala), glutamyl- (Glu), leucyl-cystinyl- (Cys) and aspartyl-aminopeptidase (AspAp) urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group) received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG), albumin, and neutrophil gelatinase-associated lipocalin (NGAL). Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p0.259) with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.This study was supported by a grant (R1/12/2010/66) from the University of Jaén with the participation of Caja Rural of Jaén, and from the Carlos III Health Institute of the Spanish Ministry of Health and Consumer Affairs (Red de Investigación Renal, REDinREN RD06/0016/0017 and RD07/0016/2008), “FEDER una manera de hacer Europa.

    An In Silico Modeling Approach to Understanding the Dynamics of Sarcoidosis

    Get PDF
    BACKGROUND: Sarcoidosis is a polygenic disease with diverse phenotypic presentations characterized by an abnormal antigen-mediated Th1 type immune response. At present, progress towards understanding sarcoidosis disease mechanisms and the development of novel treatments is limited by constraints attendant to conducting human research in a rare disease in the absence of relevant animal models. We sought to develop a computational model to enhance our understanding of the pathological mechanisms of and predict potential treatments of sarcoidosis. METHODOLOGY/RESULTS: Based upon the literature, we developed a computational model of known interactions between essential immune cells (antigen-presenting macrophages, effector and regulatory T cells) and cytokine mediators (IL-2, TNFα, IFNγ) of granulomatous inflammation during sarcoidosis. The dynamics of these interactions are described by a set of ordinary differential equations. The model predicts bistable switching behavior which is consistent with normal (self-limited) and "sarcoidosis-like" (sustained) activation of the inflammatory components of the system following a single antigen challenge. By perturbing the influence of model components using inhibitors of the cytokine mediators, distinct clinically relevant disease phenotypes were represented. Finally, the model was shown to be useful for pre-clinical testing of therapies based upon molecular targets and dose-effect relationships. CONCLUSIONS/SIGNIFICANCE: Our work illustrates a dynamic computer simulation of granulomatous inflammation scenarios that is useful for the investigation of disease mechanisms and for pre-clinical therapeutic testing. In lieu of relevant in vitro or animal surrogates, our model may provide for the screening of potential therapies for specific sarcoidosis disease phenotypes in advance of expensive clinical trials

    Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure

    Get PDF

    Uptake and metabolism of cisplatin by rat kidney

    Get PDF
    Uptake and metabolism of cisplatin by rat kidney. Cisplatin, an effective antineoplastic agent, is toxic to the kidney. Since the kidney's vulnerability to cisplatin may originate in its ability to accumulate and retain platinum to a greater degree than other organs, we studied the characteristics of the renal accumulation of platinum and investigated the nature of intracellular platinum. Cisplatin and ethylenediammine-dichloroplatinum, nephrotoxic and antineoplastic liganded platinum compounds, were concentrated in rat renal cortical slices fivefold above medium concentration. Platinum uptake was energy- and temperature-dependent and could be inhibited by drugs which inhibit base transport. The organic anions para-aminohippurate and pyrazinoate did not reduce renal slice platinum uptake. Unbound platinum in the blood and urine was predominantly cisplatin but unbound platinum in kidney cytosol was not. This latter compound, in contrast to cisplatin, was not active as a mutagen. These studies suggest that the kidney accumulates platinum in part by transport or specific binding to the base transport system in the kidney and biotransforms it intracellularly. Unbound platinum in the cell is not cisplatin and may no longer be toxic.Captation et métabolisme du cisplatine par le rein de rat. Le cisplatine, un agent anti-néoplasique efficace, est toxique pour le rein. Puisque la vulnérabilité du rein au cisplatine pourrait provenir de sa capacité d'accumuler et de conserver le platine à un degré plus élevé que d'autres organes, nous avons étudié les caractéristiques de l'accumulation rénale de platine et cherché la nature du platine intra-cellulaire. Le cisplatine et l'éthylènediamminedichloroplatine, des composés néphro-toxiques et anti-néoplasiques liés au platine, étaient concentrés dans des tranches corticales rénales de rat cinq fois plus que la concentration du milieu. La captation du platine était dépendante de l'énergie et de la température, et pouvait être inhibée par des médicaments qui inhibent le transport des bases. Les anions organiques para-aminohippurate et pyrazinoate ne diminuaient pas la captation du platine par les tranches rénales. Le platine non lié dans le sang et l'urine était de façon prédominante du cisplatine, mais le platine non lié dans le cytosol de rein n'en était pas. Ce dernier composé, contrairement au cisplatine, n'était pas actif en tant que mutagène. Ces études suggèrent que le rein accumule le platine en partie par un transport ou par une liaison spécifique au système de transport des bases dans le rein, et le biotransforme dans les cellules. Le platine non lié dans la cellule n'est pas du cisplatine et pourrait ne plus être toxique

    Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats-species differences and technical considerations

    Get PDF
    Ammonium chloride addition to drinking water is often used to induce metabolic acidosis (MA) in rodents but may also cause mild dehydration. Previous microarray screening of acidotic mouse kidneys showed upregulation of genes involved in renal water handling. Thus, we compared two protocols to induce metabolic acidosis in mice and rats: standard 0.28M NH(4)Cl in drinking water or an equivalent amount of NH(4)Cl in food. Both treatments induced MA in mice and rats. In rats, NH (4)Cl in water caused signs of dehydration, reduced mRNA abundance of the vasopression receptor 2 (V2R), increased protein abundance of the aquaporin water channels AQP2 and AQP3 and stimulated phosphorylation of AQP2 at residues Ser256 and Ser261. In contrast, NH(4)Cl in food induced massive diuresis, decreased mRNA levels of V2R, AQP2, and AQP3, did not affect protein abundance of AQP2 and AQP3, and stimulated phosphorylation at Ser261 but not pSer256 of AQP2. In mice, NH(4)Cl in drinking water stimulated urine concentration, increased AQP2 and V2R mRNA levels, and enhanced AQP2 and AQP3 protein expression with higher levels of AQP2 pSer256 and pSer261. Addition of NH(4)Cl to food, stimulated diuresis, had no effect on mRNA levels of AQP2, AQP3, and V2R, and enhanced only AQP3 protein abundance whereas pSer256-AQP2 and pSer261-AQP2 remained unaltered. Similarly, AQP2 staining was more intense and luminal in kidney from mice with NH(4)Cl in water but not in food. Pendrin, SNAT3 and PEPCK mRNA expression in mouse kidney were not affected by the route of N(4)Cl application. Thus, addition of NH(4)Cl to water or food causes MA but has differential effects on diuresis and expression of mRNAs and proteins related to renal water handling. Moreover, mice and rats respond differently to NH(4)Cl loading, and increased water intake and diuresis may be a compensatory mechanism during MA. It may be necessary to consider these effects in planning and interpreting experiments of NH(4)Cl supplementation to animals
    corecore